Commit 370ae055 authored by Russ Cox's avatar Russ Cox

reflect: add Select

R=r, iant, rogpeppe, bradfitz
CC=golang-dev
https://golang.org/cl/6498078
parent e8de8b58
...@@ -9,10 +9,13 @@ import ( ...@@ -9,10 +9,13 @@ import (
"encoding/base64" "encoding/base64"
"fmt" "fmt"
"io" "io"
"math/rand"
"os" "os"
. "reflect" . "reflect"
"runtime" "runtime"
"sync"
"testing" "testing"
"time"
"unsafe" "unsafe"
) )
...@@ -1055,6 +1058,336 @@ func TestChan(t *testing.T) { ...@@ -1055,6 +1058,336 @@ func TestChan(t *testing.T) {
} }
} }
// caseInfo describes a single case in a select test.
type caseInfo struct {
desc string
canSelect bool
recv Value
closed bool
helper func()
panic bool
}
func TestSelect(t *testing.T) {
selectWatch.once.Do(func() { go selectWatcher() })
var x exhaustive
nch := 0
newop := func(n int, cap int) (ch, val Value) {
nch++
if nch%101%2 == 1 {
c := make(chan int, cap)
ch = ValueOf(c)
val = ValueOf(n)
} else {
c := make(chan string, cap)
ch = ValueOf(c)
val = ValueOf(fmt.Sprint(n))
}
return
}
for n := 0; x.Next(); n++ {
if testing.Short() && n >= 1000 {
break
}
if n%100000 == 0 && testing.Verbose() {
println("TestSelect", n)
}
var cases []SelectCase
var info []caseInfo
// Ready send.
if x.Maybe() {
ch, val := newop(len(cases), 1)
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ch,
Send: val,
})
info = append(info, caseInfo{desc: "ready send", canSelect: true})
}
// Ready recv.
if x.Maybe() {
ch, val := newop(len(cases), 1)
ch.Send(val)
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ch,
})
info = append(info, caseInfo{desc: "ready recv", canSelect: true, recv: val})
}
// Blocking send.
if x.Maybe() {
ch, val := newop(len(cases), 0)
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ch,
Send: val,
})
// Let it execute?
if x.Maybe() {
f := func() { ch.Recv() }
info = append(info, caseInfo{desc: "blocking send", helper: f})
} else {
info = append(info, caseInfo{desc: "blocking send"})
}
}
// Blocking recv.
if x.Maybe() {
ch, val := newop(len(cases), 0)
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ch,
})
// Let it execute?
if x.Maybe() {
f := func() { ch.Send(val) }
info = append(info, caseInfo{desc: "blocking recv", recv: val, helper: f})
} else {
info = append(info, caseInfo{desc: "blocking recv"})
}
}
// Zero Chan send.
if x.Maybe() {
// Maybe include value to send.
var val Value
if x.Maybe() {
val = ValueOf(100)
}
cases = append(cases, SelectCase{
Dir: SelectSend,
Send: val,
})
info = append(info, caseInfo{desc: "zero Chan send"})
}
// Zero Chan receive.
if x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectRecv,
})
info = append(info, caseInfo{desc: "zero Chan recv"})
}
// nil Chan send.
if x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ValueOf((chan int)(nil)),
Send: ValueOf(101),
})
info = append(info, caseInfo{desc: "nil Chan send"})
}
// nil Chan recv.
if x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ValueOf((chan int)(nil)),
})
info = append(info, caseInfo{desc: "nil Chan recv"})
}
// closed Chan send.
if x.Maybe() {
ch := make(chan int)
close(ch)
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ValueOf(ch),
Send: ValueOf(101),
})
info = append(info, caseInfo{desc: "closed Chan send", canSelect: true, panic: true})
}
// closed Chan recv.
if x.Maybe() {
ch, val := newop(len(cases), 0)
ch.Close()
val = Zero(val.Type())
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ch,
})
info = append(info, caseInfo{desc: "closed Chan recv", canSelect: true, closed: true, recv: val})
}
var helper func() // goroutine to help the select complete
// Add default? Must be last case here, but will permute.
// Add the default if the select would otherwise
// block forever, and maybe add it anyway.
numCanSelect := 0
canProceed := false
canBlock := true
canPanic := false
helpers := []int{}
for i, c := range info {
if c.canSelect {
canProceed = true
canBlock = false
numCanSelect++
if c.panic {
canPanic = true
}
} else if c.helper != nil {
canProceed = true
helpers = append(helpers, i)
}
}
if !canProceed || x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectDefault,
})
info = append(info, caseInfo{desc: "default", canSelect: canBlock})
numCanSelect++
} else if canBlock {
// Select needs to communicate with another goroutine.
cas := &info[helpers[x.Choose(len(helpers))]]
helper = cas.helper
cas.canSelect = true
numCanSelect++
}
// Permute cases and case info.
// Doing too much here makes the exhaustive loop
// too exhausting, so just do two swaps.
for loop := 0; loop < 2; loop++ {
i := x.Choose(len(cases))
j := x.Choose(len(cases))
cases[i], cases[j] = cases[j], cases[i]
info[i], info[j] = info[j], info[i]
}
if helper != nil {
// We wait before kicking off a goroutine to satisfy a blocked select.
// The pause needs to be big enough to let the select block before
// we run the helper, but if we lose that race once in a while it's okay: the
// select will just proceed immediately. Not a big deal.
// For short tests we can grow [sic] the timeout a bit without fear of taking too long
pause := 10 * time.Microsecond
if testing.Short() {
pause = 100 * time.Microsecond
}
time.AfterFunc(pause, helper)
}
// Run select.
i, recv, recvOK, panicErr := runSelect(cases, info)
if panicErr != nil && !canPanic {
t.Fatalf("%s\npanicked unexpectedly: %v", fmtSelect(info), panicErr)
}
if panicErr == nil && canPanic && numCanSelect == 1 {
t.Fatalf("%s\nselected #%d incorrectly (should panic)", fmtSelect(info), i)
}
if panicErr != nil {
continue
}
cas := info[i]
if !cas.canSelect {
recvStr := ""
if recv.IsValid() {
recvStr = fmt.Sprintf(", received %v, %v", recv.Interface(), recvOK)
}
t.Fatalf("%s\nselected #%d incorrectly%s", fmtSelect(info), i, recvStr)
continue
}
if cas.panic {
t.Fatalf("%s\nselected #%d incorrectly (case should panic)", fmtSelect(info), i)
continue
}
if cases[i].Dir == SelectRecv {
if !recv.IsValid() {
t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, cas.recv.Interface(), !cas.closed)
}
if !cas.recv.IsValid() {
t.Fatalf("%s\nselected #%d but internal error: missing recv value", fmtSelect(info), i)
}
if recv.Interface() != cas.recv.Interface() || recvOK != !cas.closed {
if recv.Interface() == cas.recv.Interface() && recvOK == !cas.closed {
t.Fatalf("%s\nselected #%d, got %#v, %v, and DeepEqual is broken on %T", fmtSelect(info), i, recv.Interface(), recvOK, recv.Interface())
}
t.Fatalf("%s\nselected #%d but got %#v, %v, want %#v, %v", fmtSelect(info), i, recv.Interface(), recvOK, cas.recv.Interface(), !cas.closed)
}
} else {
if recv.IsValid() || recvOK {
t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, Value{}, false)
}
}
}
}
// selectWatch and the selectWatcher are a watchdog mechanism for running Select.
// If the selectWatcher notices that the select has been blocked for >1 second, it prints
// an error describing the select and panics the entire test binary.
var selectWatch struct {
sync.Mutex
once sync.Once
now time.Time
info []caseInfo
}
func selectWatcher() {
for {
time.Sleep(1 * time.Second)
selectWatch.Lock()
if selectWatch.info != nil && time.Since(selectWatch.now) > 1*time.Second {
fmt.Fprintf(os.Stderr, "TestSelect:\n%s blocked indefinitely\n", fmtSelect(selectWatch.info))
panic("select stuck")
}
selectWatch.Unlock()
}
}
// runSelect runs a single select test.
// It returns the values returned by Select but also returns
// a panic value if the Select panics.
func runSelect(cases []SelectCase, info []caseInfo) (chosen int, recv Value, recvOK bool, panicErr interface{}) {
defer func() {
panicErr = recover()
selectWatch.Lock()
selectWatch.info = nil
selectWatch.Unlock()
}()
selectWatch.Lock()
selectWatch.now = time.Now()
selectWatch.info = info
selectWatch.Unlock()
chosen, recv, recvOK = Select(cases)
return
}
// fmtSelect formats the information about a single select test.
func fmtSelect(info []caseInfo) string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "\nselect {\n")
for i, cas := range info {
fmt.Fprintf(&buf, "%d: %s", i, cas.desc)
if cas.recv.IsValid() {
fmt.Fprintf(&buf, " val=%#v", cas.recv.Interface())
}
if cas.canSelect {
fmt.Fprintf(&buf, " canselect")
}
if cas.panic {
fmt.Fprintf(&buf, " panic")
}
fmt.Fprintf(&buf, "\n")
}
fmt.Fprintf(&buf, "}")
return buf.String()
}
// Difficult test for function call because of // Difficult test for function call because of
// implicit padding between arguments. // implicit padding between arguments.
func dummy(b byte, c int, d byte) (i byte, j int, k byte) { func dummy(b byte, c int, d byte) (i byte, j int, k byte) {
...@@ -1933,3 +2266,94 @@ func BenchmarkFieldByName3(b *testing.B) { ...@@ -1933,3 +2266,94 @@ func BenchmarkFieldByName3(b *testing.B) {
t.FieldByName("X") t.FieldByName("X")
} }
} }
// An exhaustive is a mechanism for writing exhaustive or stochastic tests.
// The basic usage is:
//
// for x.Next() {
// ... code using x.Maybe() or x.Choice(n) to create test cases ...
// }
//
// Each iteration of the loop returns a different set of results, until all
// possible result sets have been explored. It is okay for different code paths
// to make different method call sequences on x, but there must be no
// other source of non-determinism in the call sequences.
//
// When faced with a new decision, x chooses randomly. Future explorations
// of that path will choose successive values for the result. Thus, stopping
// the loop after a fixed number of iterations gives somewhat stochastic
// testing.
//
// Example:
//
// for x.Next() {
// v := make([]bool, x.Choose(4))
// for i := range v {
// v[i] = x.Maybe()
// }
// fmt.Println(v)
// }
//
// prints (in some order):
//
// []
// [false]
// [true]
// [false false]
// [false true]
// ...
// [true true]
// [false false false]
// ...
// [true true true]
// [false false false false]
// ...
// [true true true true]
//
type exhaustive struct {
r *rand.Rand
pos int
last []choice
}
type choice struct {
off int
n int
max int
}
func (x *exhaustive) Next() bool {
if x.r == nil {
x.r = rand.New(rand.NewSource(time.Now().UnixNano()))
}
x.pos = 0
if x.last == nil {
x.last = []choice{}
return true
}
for i := len(x.last) - 1; i >= 0; i-- {
c := &x.last[i]
if c.n+1 < c.max {
c.n++
x.last = x.last[:i+1]
return true
}
}
return false
}
func (x *exhaustive) Choose(max int) int {
if x.pos >= len(x.last) {
x.last = append(x.last, choice{x.r.Intn(max), 0, max})
}
c := &x.last[x.pos]
x.pos++
if c.max != max {
panic("inconsistent use of exhaustive tester")
}
return (c.n + c.off) % max
}
func (x *exhaustive) Maybe() bool {
return x.Choose(2) == 1
}
...@@ -186,6 +186,12 @@ type Type interface { ...@@ -186,6 +186,12 @@ type Type interface {
uncommon() *uncommonType uncommon() *uncommonType
} }
/*
* These data structures are known to the compiler (../../cmd/gc/reflect.c).
* A few are known to ../runtime/type.go to convey to debuggers.
* They are also known to ../runtime/type.h.
*/
// A Kind represents the specific kind of type that a Type represents. // A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind. // The zero Kind is not a valid kind.
type Kind uint type Kind uint
...@@ -220,11 +226,6 @@ const ( ...@@ -220,11 +226,6 @@ const (
UnsafePointer UnsafePointer
) )
/*
* These data structures are known to the compiler (../../cmd/gc/reflect.c).
* A few are known to ../runtime/type.go to convey to debuggers.
*/
// The compiler can only construct empty interface values at // The compiler can only construct empty interface values at
// compile time; non-empty interface values get created // compile time; non-empty interface values get created
// during initialization. Type is an empty interface // during initialization. Type is an empty interface
......
...@@ -1618,6 +1618,140 @@ func Copy(dst, src Value) int { ...@@ -1618,6 +1618,140 @@ func Copy(dst, src Value) int {
return n return n
} }
// A runtimeSelect is a single case passed to rselect.
// This must match ../runtime/chan.c:/runtimeSelect
type runtimeSelect struct {
dir uintptr // 0, SendDir, or RecvDir
typ *runtimeType // channel type
ch iword // interface word for channel
val iword // interface word for value (for SendDir)
}
// rselect runs a select. It returns the index of the chosen case,
// and if the case was a receive, the interface word of the received
// value and the conventional OK bool to indicate whether the receive
// corresponds to a sent value.
func rselect([]runtimeSelect) (chosen int, recv iword, recvOK bool)
// A SelectDir describes the communication direction of a select case.
type SelectDir int
// NOTE: These values must match ../runtime/chan.c:/SelectDir.
const (
_ SelectDir = iota
SelectSend // case Chan <- Send
SelectRecv // case <-Chan:
SelectDefault // default
)
// A SelectCase describes a single case in a select operation.
// The kind of case depends on Dir, the communication direction.
//
// If Dir is SelectDefault, the case represents a default case.
// Chan and Send must be zero Values.
//
// If Dir is SelectSend, the case represents a send operation.
// Normally Chan's underlying value must be a channel, and Send's underlying value must be
// assignable to the channel's element type. As a special case, if Chan is a zero Value,
// then the case is ignored, and the field Send will also be ignored and may be either zero
// or non-zero.
//
// If Dir is SelectRecv, the case represents a receive operation.
// Normally Chan's underlying value must be a channel and Send must be a zero Value.
// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
// When a receive operation is selected, the received Value is returned by Select.
//
type SelectCase struct {
Dir SelectDir // direction of case
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
}
// Select executes a select operation described by the list of cases.
// Like the Go select statement, it blocks until one of the cases can
// proceed and then executes that case. It returns the index of the chosen case
// and, if that case was a receive operation, the value received and a
// boolean indicating whether the value corresponds to a send on the channel
// (as opposed to a zero value received because the channel is closed).
func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
// NOTE: Do not trust that caller is not modifying cases data underfoot.
// The range is safe because the caller cannot modify our copy of the len
// and each iteration makes its own copy of the value c.
runcases := make([]runtimeSelect, len(cases))
haveDefault := false
for i, c := range cases {
rc := &runcases[i]
rc.dir = uintptr(c.Dir)
switch c.Dir {
default:
panic("reflect.Select: invalid Dir")
case SelectDefault: // default
if haveDefault {
panic("reflect.Select: multiple default cases")
}
haveDefault = true
if c.Chan.IsValid() {
panic("reflect.Select: default case has Chan value")
}
if c.Send.IsValid() {
panic("reflect.Select: default case has Send value")
}
case SelectSend:
ch := c.Chan
if !ch.IsValid() {
break
}
ch.mustBe(Chan)
ch.mustBeExported()
tt := (*chanType)(unsafe.Pointer(ch.typ))
if ChanDir(tt.dir)&SendDir == 0 {
panic("reflect.Select: SendDir case using recv-only channel")
}
rc.ch = ch.iword()
rc.typ = tt.runtimeType()
v := c.Send
if !v.IsValid() {
panic("reflect.Select: SendDir case missing Send value")
}
v.mustBeExported()
v = v.assignTo("reflect.Select", toCommonType(tt.elem), nil)
rc.val = v.iword()
case SelectRecv:
if c.Send.IsValid() {
panic("reflect.Select: RecvDir case has Send value")
}
ch := c.Chan
if !ch.IsValid() {
break
}
ch.mustBe(Chan)
ch.mustBeExported()
tt := (*chanType)(unsafe.Pointer(ch.typ))
rc.typ = tt.runtimeType()
if ChanDir(tt.dir)&RecvDir == 0 {
panic("reflect.Select: RecvDir case using send-only channel")
}
rc.ch = ch.iword()
}
}
chosen, word, recvOK := rselect(runcases)
if runcases[chosen].dir == uintptr(SelectRecv) {
tt := (*chanType)(unsafe.Pointer(toCommonType(runcases[chosen].typ)))
typ := toCommonType(tt.elem)
fl := flag(typ.Kind()) << flagKindShift
if typ.size > ptrSize {
fl |= flagIndir
}
recv = Value{typ, unsafe.Pointer(word), fl}
}
return chosen, recv, recvOK
}
/* /*
* constructors * constructors
*/ */
......
...@@ -999,11 +999,17 @@ syncsend: ...@@ -999,11 +999,17 @@ syncsend:
runtime·ready(gp); runtime·ready(gp);
retc: retc:
// return to pc corresponding to chosen case // return pc corresponding to chosen case.
// Set boolean passed during select creation
// (at offset selp + cas->so) to true.
// If cas->so == 0, this is a reflect-driven select and we
// don't need to update the boolean.
pc = cas->pc; pc = cas->pc;
as = (byte*)selp + cas->so; if(cas->so > 0) {
as = (byte*)selp + cas->so;
*as = true;
}
runtime·free(sel); runtime·free(sel);
*as = true;
return pc; return pc;
sclose: sclose:
...@@ -1013,6 +1019,87 @@ sclose: ...@@ -1013,6 +1019,87 @@ sclose:
return nil; // not reached return nil; // not reached
} }
// This struct must match ../reflect/value.go:/runtimeSelect.
typedef struct runtimeSelect runtimeSelect;
struct runtimeSelect
{
uintptr dir;
ChanType *typ;
Hchan *ch;
uintptr val;
};
// This enum must match ../reflect/value.go:/SelectDir.
enum SelectDir {
SelectSend = 1,
SelectRecv,
SelectDefault,
};
// func rselect(cases []runtimeSelect) (chosen int, word uintptr, recvOK bool)
void
reflect·rselect(Slice cases, int32 chosen, uintptr word, bool recvOK)
{
int32 i;
Select *sel;
runtimeSelect* rcase, *rc;
void *elem;
void *recvptr;
uintptr maxsize;
chosen = -1;
word = 0;
recvOK = false;
maxsize = 0;
rcase = (runtimeSelect*)cases.array;
for(i=0; i<cases.len; i++) {
rc = &rcase[i];
if(rc->dir == SelectRecv && rc->ch != nil && maxsize < rc->typ->elem->size)
maxsize = rc->typ->elem->size;
}
recvptr = nil;
if(maxsize > sizeof(void*))
recvptr = runtime·mal(maxsize);
newselect(cases.len, &sel);
for(i=0; i<cases.len; i++) {
rc = &rcase[i];
switch(rc->dir) {
case SelectDefault:
selectdefault(sel, (void*)i, 0);
break;
case SelectSend:
if(rc->ch == nil)
break;
if(rc->typ->elem->size > sizeof(void*))
elem = (void*)rc->val;
else
elem = (void*)&rc->val;
selectsend(sel, rc->ch, (void*)i, elem, 0);
break;
case SelectRecv:
if(rc->ch == nil)
break;
if(rc->typ->elem->size > sizeof(void*))
elem = recvptr;
else
elem = &word;
selectrecv(sel, rc->ch, (void*)i, elem, &recvOK, 0);
break;
}
}
chosen = (int32)(uintptr)selectgo(&sel);
if(rcase[chosen].dir == SelectRecv && rcase[chosen].typ->elem->size > sizeof(void*))
word = (uintptr)recvptr;
FLUSH(&chosen);
FLUSH(&word);
FLUSH(&recvOK);
}
// closechan(sel *byte); // closechan(sel *byte);
void void
runtime·closechan(Hchan *c) runtime·closechan(Hchan *c)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment