Commit 5cbc96d9 authored by Nigel Tao's avatar Nigel Tao

Introduce the image package.

R=rsc
APPROVED=r,rsc
DELTA=244  (244 added, 0 deleted, 0 changed)
OCL=33733
CL=33940
parent 2d73b7f7
......@@ -32,6 +32,7 @@ hash.install: io.install
hash/adler32.install: hash.install os.install
hash/crc32.install: hash.install os.install
http.install: bufio.install bytes.install container/vector.install fmt.install io.install log.install net.install os.install path.install strconv.install strings.install utf8.install
image.install:
io.install: bytes.install os.install strings.install sync.install
json.install: bytes.install container/vector.install fmt.install math.install reflect.install strconv.install strings.install utf8.install
log.install: fmt.install io.install os.install runtime.install time.install
......
......@@ -46,6 +46,7 @@ DIRS=\
hash/adler32\
hash/crc32\
http\
image\
io\
json\
log\
......
# Copyright 2009 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
include $(GOROOT)/src/Make.$(GOARCH)
TARG=image
GOFILES=\
color.go\
image.go\
include $(GOROOT)/src/Make.pkg
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package image
// TODO(nigeltao): Clarify semantics wrt premultiplied vs unpremultiplied colors.
// It's probably also worth thinking about floating-point color models.
// All Colors can convert themselves, with a possible loss of precision, to 128-bit RGBA.
type Color interface {
RGBA() (r, g, b, a uint32);
}
// An RGBAColor represents a traditional 32-bit color, having 8 bits for each of red, green, blue and alpha.
type RGBAColor struct {
R, G, B, A uint8;
}
func (c RGBAColor) RGBA() (r, g, b, a uint32) {
r = uint32(c.R);
r |= r<<8;
r |= r<<16;
g = uint32(c.G);
g |= g<<8;
g |= g<<16;
b = uint32(c.B);
b |= b<<8;
b |= b<<16;
a = uint32(c.A);
a |= a<<8;
a |= a<<16;
return;
}
// An RGBA64Color represents a 64-bit color, having 16 bits for each of red, green, blue and alpha.
type RGBA64Color struct {
R, G, B, A uint16;
}
func (c RGBA64Color) RGBA() (r, g, b, a uint32) {
r = uint32(c.R);
r |= r<<16;
g = uint32(c.G);
g |= g<<16;
b = uint32(c.B);
b |= b<<16;
a = uint32(c.A);
a |= a<<16;
return;
}
// A ColorModel can convert foreign Colors, with a possible loss of precision, to a Color
// from its own color model.
type ColorModel interface {
Convert(c Color) Color;
}
// The ColorModelFunc type is an adapter to allow the use of an ordinary
// color conversion function as a ColorModel. If f is such a function,
// ColorModelFunc(f) is a ColorModel object that invokes f to implement
// the conversion.
type ColorModelFunc func(Color) Color
func (f ColorModelFunc) Convert(c Color) Color {
return f(c);
}
func toRGBAColor(c Color) Color {
if _, ok := c.(RGBAColor); ok { // no-op conversion
return c;
}
r, g, b, a := c.RGBA();
return RGBAColor{ uint8(r>>24), uint8(g>>24), uint8(b>>24), uint8(a>>24) };
}
func toRGBA64Color(c Color) Color {
if _, ok := c.(RGBA64Color); ok { // no-op conversion
return c;
}
r, g, b, a := c.RGBA();
return RGBA64Color{ uint16(r>>16), uint16(g>>16), uint16(b>>16), uint16(a>>16) };
}
// The ColorModel associated with RGBAColor.
var RGBAColorModel ColorModel = ColorModelFunc(toRGBAColor);
// The ColorModel associated with RGBA64Color.
var RGBA64ColorModel ColorModel = ColorModelFunc(toRGBA64Color);
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The image package implements a basic 2-D image library.
package image
// An Image is a rectangular grid of Colors drawn from a ColorModel.
type Image interface {
ColorModel() ColorModel;
Width() int;
Height() int;
// At(0, 0) returns the upper-left pixel of the grid.
// At(Width()-1, Height()-1) returns the lower-right pixel.
At(x, y int) Color;
}
// An RGBA is an in-memory image backed by a 2-D slice of RGBAColor values.
type RGBA struct {
// The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x].
Pixel [][]RGBAColor;
}
func (p *RGBA) ColorModel() ColorModel {
return RGBAColorModel;
}
func (p *RGBA) Width() int {
if len(p.Pixel) == 0 {
return 0;
}
return len(p.Pixel[0]);
}
func (p *RGBA) Height() int {
return len(p.Pixel);
}
func (p *RGBA) At(x, y int) Color {
return p.Pixel[y][x];
}
func (p *RGBA) Set(x, y int, c Color) {
p.Pixel[y][x] = toRGBAColor(c).(RGBAColor);
}
// An RGBA64 is an in-memory image backed by a 2-D slice of RGBA64Color values.
type RGBA64 struct {
// The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x].
Pixel [][]RGBA64Color;
}
func (p *RGBA64) ColorModel() ColorModel {
return RGBA64ColorModel;
}
func (p *RGBA64) Width() int {
if len(p.Pixel) == 0 {
return 0;
}
return len(p.Pixel[0]);
}
func (p *RGBA64) Height() int {
return len(p.Pixel);
}
func (p *RGBA64) At(x, y int) Color {
return p.Pixel[y][x];
}
func (p *RGBA64) Set(x, y int, c Color) {
p.Pixel[y][x] = toRGBA64Color(c).(RGBA64Color);
}
// A PalettedColorModel represents a fixed palette of colors.
type PalettedColorModel []Color;
func diff(a, b uint32) uint32 {
if a > b {
return a - b;
}
return b - a;
}
// Convert returns the palette color closest to c in Euclidean R,G,B space.
func (p PalettedColorModel) Convert(c Color) Color {
if len(p) == 0 {
return nil;
}
// TODO(nigeltao): Revisit the "pick the palette color which minimizes sum-squared-difference"
// algorithm when the premultiplied vs unpremultiplied issue is resolved.
// Currently, we only compare the R, G and B values, and ignore A.
cr, cg, cb, ca := c.RGBA();
// Shift by 17 bits to avoid potential uint32 overflow in sum-squared-difference.
cr >>= 17;
cg >>= 17;
cb >>= 17;
result := Color(nil);
bestSSD := uint32(1<<32 - 1);
for _, v := range p {
vr, vg, vb, va := v.RGBA();
vr >>= 17;
vg >>= 17;
vb >>= 17;
dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb);
ssd := (dr * dr) + (dg * dg) + (db * db);
if ssd < bestSSD {
bestSSD = ssd;
result = v;
}
}
return result;
}
// A Paletted is an in-memory image backed by a 2-D slice of byte values and a PalettedColorModel.
type Paletted struct {
// The Pixel field's indices are y first, then x, so that At(x, y) == Palette[Pixel[y][x]].
Pixel [][]byte;
Palette PalettedColorModel;
}
func (p *Paletted) ColorModel() ColorModel {
return p.Palette;
}
func (p *Paletted) Width() int {
if len(p.Pixel) == 0 {
return 0;
}
return len(p.Pixel[0]);
}
func (p *Paletted) Height() int {
return len(p.Pixel);
}
func (p *Paletted) At(x, y int) Color {
return p.Palette[p.Pixel[y][x]];
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment