Commit 847b61b5 authored by Luuk van Dijk's avatar Luuk van Dijk

gc: Escape analysis.

For now it's switch-on-and-offable with -s, and the effects can be inspected
with -m.  Defaults are the old codepaths.

R=rsc
CC=golang-dev
https://golang.org/cl/4634073
parent 52818f45
......@@ -22,6 +22,7 @@ OFILES=\
closure.$O\
const.$O\
dcl.$O\
esc.$O\
export.$O\
gen.$O\
init.$O\
......
......@@ -820,6 +820,10 @@ stotype(NodeList *l, int et, Type **t, int funarg)
f->width = BADWIDTH;
f->isddd = n->isddd;
// esc.c needs to find f given a PPARAM to add the tag.
if(funarg && n->left && n->left->class == PPARAM)
n->left->paramfld = f;
if(left != N && left->op == ONAME) {
f->nname = left;
f->embedded = n->embedded;
......
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The base version before this file existed, active with debug['s']
// == 0, assumes any node that has a reference to it created at some
// point, may flow to the global scope except
// - if its address is dereferenced immediately with only CONVNOPs in
// between the * and the &
// - if it is for a closure variable and the closure executed at the
// place it's defined
//
// Flag -s disables the old codepaths and switches on the code here:
//
// First escfunc, escstmt and escexpr recurse over the ast of each
// function to dig out flow(dst,src) edges between any
// pointer-containing nodes and store them in dst->escflowsrc. For
// variables assigned to a variable in an outer scope or used as a
// return value, they store a flow(theSink, src) edge to a fake node
// 'the Sink'. For variables referenced in closures, an edge
// flow(closure, &var) is recorded and the flow of a closure itself to
// an outer scope is tracked the same way as other variables.
//
// Then escflood walks the graph starting at theSink and tags all
// variables of it can reach an & node as escaping and all function
// parameters it can reach as leaking.
//
// Watch the variables moved to the heap and parameters tagged as
// unsafe with -m, more detailed analysis output with -mm
//
#include "go.h"
static void escfunc(Node *func);
static void escstmtlist(NodeList *stmts);
static void escstmt(Node *stmt);
static void escexpr(Node *dst, Node *expr);
static void escexprcall(Node *dst, Node *callexpr);
static void escflows(Node* dst, Node* src);
static void escflood(Node *dst);
static void escwalk(int level, Node *dst, Node *src);
static void esctag(Node *func);
// Fake node that all
// - return values and output variables
// - parameters on imported functions not marked 'safe'
// - assignments to global variables
// flow to.
static Node theSink;
static NodeList* dsts; // all dst nodes
static int loopdepth; // for detecting nested loop scopes
static int pdepth; // for debug printing in recursions.
static int floodgen; // loop prevention in flood/walk
static Strlit* safetag; // gets slapped on safe parameters' field types for export
static int dstcount, edgecount; // diagnostic
void
escapes(void)
{
NodeList *l;
theSink.op = ONAME;
theSink.class = PEXTERN;
theSink.sym = lookup(".sink");
theSink.escloopdepth = -1;
safetag = strlit("noescape");
// flow-analyze top level functions
for(l=xtop; l; l=l->next)
if(l->n->op == ODCLFUNC || l->n->op == OCLOSURE)
escfunc(l->n);
// print("escapes: %d dsts, %d edges\n", dstcount, edgecount);
// visit the updstream of each dst, mark address nodes with
// addrescapes, mark parameters unsafe
for (l = dsts; l; l=l->next)
escflood(l->n);
// for all top level functions, tag the typenodes corresponding to the param nodes
for(l=xtop; l; l=l->next)
if(l->n->op == ODCLFUNC)
esctag(l->n);
}
static void
escfunc(Node *func)
{
Node *savefn, *n;
NodeList *ll;
int saveld;
saveld = loopdepth;
loopdepth = 1;
savefn = curfn;
curfn = func;
for(ll=curfn->dcl; ll; ll=ll->next) {
if(ll->n->op != ONAME)
continue;
switch (ll->n->class) {
case PPARAMOUT:
// output parameters flow to the sink
escflows(&theSink, ll->n);
ll->n->escloopdepth = loopdepth;
break;
case PPARAM:
ll->n->esc = EscNone; // prime for escflood later
ll->n->escloopdepth = loopdepth;
break;
}
}
// walk will take the address of cvar->closure later and assign it to cvar.
// handle that here by linking a fake oaddr node directly to the closure.
for (ll=curfn->cvars; ll; ll=ll->next) {
if(ll->n->op == OXXX) // see dcl.c:398
continue;
n = nod(OADDR, ll->n->closure, N);
n->lineno = ll->n->lineno;
typecheck(&n, Erv);
escexpr(curfn, n);
}
escstmtlist(curfn->nbody);
curfn = savefn;
loopdepth = saveld;
}
static void
escstmtlist(NodeList* stmts)
{
for(; stmts; stmts=stmts->next)
escstmt(stmts->n);
}
static void
escstmt(Node *stmt)
{
int cl, cr, lno;
NodeList *ll, *lr;
Node *dst;
if(stmt == N)
return;
lno = setlineno(stmt);
if(stmt->typecheck == 0 && stmt->op != ODCL) { // TODO something with OAS2
dump("escstmt missing typecheck", stmt);
fatal("missing typecheck.");
}
// Common to almost all statements, and nil if n/a.
escstmtlist(stmt->ninit);
if(debug['m'] > 1)
print("%L:[%d] %#S statement: %#N\n", lineno, loopdepth,
(curfn && curfn->nname) ? curfn->nname->sym : S, stmt);
switch(stmt->op) {
case ODCL:
case ODCLFIELD:
// a declaration ties the node to the current
// function, but we already have that edge in
// curfn->dcl and will follow it explicitly in
// escflood to avoid storing redundant information
// What does have to happen here is note if the name
// is declared inside a looping scope.
stmt->left->escloopdepth = loopdepth;
break;
case OLABEL: // TODO: new loop/scope only if there are backjumps to it.
loopdepth++;
break;
case OBLOCK:
escstmtlist(stmt->list);
break;
case OFOR:
if(stmt->ntest != N) {
escstmtlist(stmt->ntest->ninit);
escexpr(N, stmt->ntest);
}
escstmt(stmt->nincr);
loopdepth++;
escstmtlist(stmt->nbody);
loopdepth--;
break;
case ORANGE: // for <list> = range <right> { <nbody> }
switch(stmt->type->etype) {
case TSTRING: // never flows
escexpr(stmt->list->n, N);
if(stmt->list->next)
escexpr(stmt->list->next->n, N);
escexpr(N, stmt->right);
break;
case TARRAY: // i, v = range sliceorarray
escexpr(stmt->list->n, N);
if(stmt->list->next)
escexpr(stmt->list->next->n, stmt->right);
break;
case TMAP: // k [, v] = range map
escexpr(stmt->list->n, stmt->right);
if(stmt->list->next)
escexpr(stmt->list->next->n, stmt->right);
break;
case TCHAN: // v = range chan
escexpr(stmt->list->n, stmt->right);
break;
}
loopdepth++;
escstmtlist(stmt->nbody);
loopdepth--;
break;
case OIF:
escexpr(N, stmt->ntest);
escstmtlist(stmt->nbody);
escstmtlist(stmt->nelse);
break;
case OSELECT:
for(ll=stmt->list; ll; ll=ll->next) { // cases
escstmt(ll->n->left);
escstmtlist(ll->n->nbody);
}
break;
case OSELRECV2: // v, ok := <-ch ntest:ok
escexpr(N, stmt->ntest);
// fallthrough
case OSELRECV: // v := <-ch left: v right->op = ORECV
escexpr(N, stmt->left);
escexpr(stmt->left, stmt->right);
break;
case OSWITCH:
if(stmt->ntest && stmt->ntest->op == OTYPESW) {
for(ll=stmt->list; ll; ll=ll->next) { // cases
// ntest->right is the argument of the .(type),
// ll->n->nname is the variable per case
escexpr(ll->n->nname, stmt->ntest->right);
escstmtlist(ll->n->nbody);
}
} else {
escexpr(N, stmt->ntest);
for(ll=stmt->list; ll; ll=ll->next) { // cases
for(lr=ll->n->list; lr; lr=lr->next)
escexpr(N, lr->n);
escstmtlist(ll->n->nbody);
}
}
break;
case OAS:
case OASOP:
escexpr(stmt->left, stmt->right);
break;
// escape analysis happens after typecheck, so the
// OAS2xxx have already been substituted.
case OAS2: // x,y = a,b
cl = count(stmt->list);
cr = count(stmt->rlist);
if(cl > 1 && cr == 1) {
for(ll=stmt->list; ll; ll=ll->next)
escexpr(ll->n, stmt->rlist->n);
} else {
if(cl != cr)
fatal("escstmt: bad OAS2: %N", stmt);
for(ll=stmt->list, lr=stmt->rlist; ll; ll=ll->next, lr=lr->next)
escexpr(ll->n, lr->n);
}
break;
case OAS2RECV: // v, ok = <-ch
case OAS2MAPR: // v, ok = m[k]
case OAS2DOTTYPE: // v, ok = x.(type)
escexpr(stmt->list->n, stmt->rlist->n);
escexpr(stmt->list->next->n, N);
break;
case OAS2MAPW: // m[k] = x, ok.. stmt->list->n is the INDEXMAP, k is handled in escexpr(dst...)
escexpr(stmt->list->n, stmt->rlist->n);
escexpr(N, stmt->rlist->next->n);
break;
case ORECV: // unary <-ch as statement
escexpr(N, stmt->left);
break;
case OSEND: // ch <- x
escexpr(&theSink, stmt->right); // for now. TODO escexpr(stmt->left, stmt->right);
break;
case OCOPY: // todo: treat as *dst=*src instead of as dst=src
escexpr(stmt->left, stmt->right);
break;
case OAS2FUNC: // x,y,z = f()
for(ll = stmt->list; ll; ll=ll->next)
escexpr(ll->n, N);
escexpr(N, stmt->rlist->n);
break;
case OCALLINTER:
case OCALLFUNC:
case OCALLMETH:
escexpr(N, stmt);
break;
case OPROC:
case ODEFER:
// stmt->left is a (pseud)ocall, stmt->left->left is
// the function being called. if this defer is at
// loopdepth >1, everything leaks. TODO this is
// overly conservative, it's enough if it leaks to a
// fake node at the function's top level
dst = &theSink;
if (stmt->op == ODEFER && loopdepth <= 1)
dst = nil;
escexpr(dst, stmt->left->left);
for(ll=stmt->left->list; ll; ll=ll->next)
escexpr(dst, ll->n);
break;
case ORETURN:
for(ll=stmt->list; ll; ll=ll->next)
escexpr(&theSink, ll->n);
break;
case OCLOSE:
case OPRINT:
case OPRINTN:
escexpr(N, stmt->left);
for(ll=stmt->list; ll; ll=ll->next)
escexpr(N, ll->n);
break;
case OPANIC:
// Argument could leak through recover.
escexpr(&theSink, stmt->left);
break;
}
lineno = lno;
}
// Assert that expr somehow gets assigned to dst, if non nil. for
// dst==nil, any name node expr still must be marked as being
// evaluated in curfn. For expr==nil, dst must still be examined for
// evaluations inside it (e.g *f(x) = y)
static void
escexpr(Node *dst, Node *expr)
{
int lno;
NodeList *ll;
if(isblank(dst)) dst = N;
// the lhs of an assignment needs recursive analysis too
// these are the only interesting cases
// todo:check channel case
if(dst) {
setlineno(dst);
switch(dst->op) {
case OINDEX:
case OSLICE:
escexpr(N, dst->right);
// slice: "dst[x] = src" is like *(underlying array)[x] = src
// TODO maybe this never occurs b/c of OSLICEARR and it's inserted OADDR
if(!isfixedarray(dst->left->type))
goto doref;
// fallthrough; treat "dst[x] = src" as "dst = src"
case ODOT: // treat "dst.x = src" as "dst = src"
escexpr(dst->left, expr);
return;
case OINDEXMAP:
escexpr(&theSink, dst->right); // map key is put in map
// fallthrough
case OIND:
case ODOTPTR:
case OSLICEARR: // ->left is the OADDR of the array
doref:
escexpr(N, dst->left);
// assignment to dereferences: for now we lose track
escexpr(&theSink, expr);
return;
}
}
if(expr == N || expr->op == ONONAME || expr->op == OXXX)
return;
if(expr->typecheck == 0 && expr->op != OKEY) {
dump("escexpr missing typecheck", expr);
fatal("Missing typecheck.");
}
lno = setlineno(expr);
pdepth++;
if(debug['m'] > 1)
print("%L:[%d] %#S \t%hN %.*s<= %hN\n", lineno, loopdepth,
(curfn && curfn->nname) ? curfn->nname->sym : S, dst,
2*pdepth, ".\t.\t.\t.\t.\t", expr);
switch(expr->op) {
case OADDR: // dst = &x
case OIND: // dst = *x
case ODOTPTR: // dst = (*x).f
// restart the recursion at x to figure out where it came from
escexpr(expr->left, expr->left);
// fallthrough
case ONAME:
case OPARAM:
// loopdepth was set in the defining statement or function header
escflows(dst, expr);
break;
case OARRAYLIT:
case OSTRUCTLIT:
case OMAPLIT:
expr->escloopdepth = loopdepth;
escflows(dst, expr);
for(ll=expr->list; ll; ll=ll->next) {
escexpr(expr, ll->n->left);
escexpr(expr, ll->n->right);
}
break;
case OMAKECHAN:
case OMAKEMAP:
case OMAKESLICE:
case ONEW:
expr->curfn = curfn; // should have been done in parse, but patch it up here.
expr->escloopdepth = loopdepth;
escflows(dst, expr);
// first arg is type, all others need checking
for(ll=expr->list->next; ll; ll=ll->next)
escexpr(N, ll->n);
break;
case OCLOSURE:
expr->curfn = curfn; // should have been done in parse, but patch it up here.
expr->escloopdepth = loopdepth;
escflows(dst, expr);
escfunc(expr);
break;
// end of the leaf cases. no calls to escflows() in the cases below.
case OCONV: // unaries that pass the value through
case OCONVIFACE:
case OCONVNOP:
case ODOTTYPE:
case ODOTTYPE2:
case ORECV: // leaks the whole channel
case ODOTMETH: // expr->right is just the field or method name
case ODOTINTER:
case ODOT:
escexpr(dst, expr->left);
break;
case OCOPY:
// left leaks to right, but the return value is harmless
// TODO: treat as *dst = *src, rather than as dst = src
escexpr(expr->left, expr->right);
break;
case OAPPEND:
// See TODO for OCOPY
escexpr(dst, expr->list->n);
for(ll=expr->list->next; ll; ll=ll->next)
escexpr(expr->list->n, ll->n);
break;
case OCALLMETH:
case OCALLFUNC:
case OCALLINTER:
// Moved to separate function to isolate the hair.
escexprcall(dst, expr);
break;
case OSLICEARR: // like an implicit OIND to the underlying buffer, but typecheck has inserted an OADDR
case OSLICESTR:
case OSLICE:
case OINDEX:
case OINDEXMAP:
// the big thing flows, the keys just need checking
escexpr(dst, expr->left);
escexpr(N, expr->right); // expr->right is the OKEY
break;
default: // all other harmless leaf, unary or binary cases end up here
escexpr(N, expr->left);
escexpr(N, expr->right);
break;
}
pdepth--;
lineno = lno;
}
// This is a bit messier than fortunate, pulled out of escexpr's big
// switch for clarity. We either have the paramnodes, which may be
// connected to other things throug flows or we have the parameter type
// nodes, which may be marked 'n(ofloworescape)'. Navigating the ast is slightly
// different for methods vs plain functions and for imported vs
// this-package
static void
escexprcall(Node *dst, Node *expr)
{
NodeList *ll, *lr;
Node *fn;
Type *t, *fntype, *thisarg, *inargs;
fn = nil;
fntype = nil;
switch(expr->op) {
case OCALLFUNC:
fn = expr->left;
escexpr(N, fn);
fntype = fn->type;
break;
case OCALLMETH:
fn = expr->left->right; // ODOTxx name
fn = fn->sym->def; // resolve to definition if we have it
if(fn)
fntype = fn->type;
else
fntype = expr->left->type;
break;
case OCALLINTER:
break;
default:
fatal("escexprcall called with non-call expression");
}
if(fn && fn->ntype) {
if(debug['m'] > 2)
print("escexprcall: have param nodes: %N\n", fn->ntype);
if(expr->op == OCALLMETH) {
if(debug['m'] > 2)
print("escexprcall: this: %N\n",fn->ntype->left->left);
escexpr(fn->ntype->left->left, expr->left->left);
}
// lr->n is the dclfield, ->left is the ONAME param node
for(ll=expr->list, lr=fn->ntype->list; ll && lr; ll=ll->next) {
if(debug['m'] > 2)
print("escexprcall: field param: %N\n", lr->n->left);
if (lr->n->left)
escexpr(lr->n->left, ll->n);
else
escexpr(&theSink, ll->n);
if(lr->n->left && !lr->n->left->isddd)
lr=lr->next;
}
return;
}
if(fntype) {
if(debug['m'] > 2)
print("escexprcall: have param types: %T\n", fntype);
if(expr->op == OCALLMETH) {
thisarg = getthisx(fntype);
t = thisarg->type;
if(debug['m'] > 2)
print("escexprcall: this: %T\n", t);
if(!t->note || strcmp(t->note->s, safetag->s) != 0)
escexpr(&theSink, expr->left->left);
else
escexpr(N, expr->left->left);
}
inargs = getinargx(fntype);
for(ll=expr->list, t=inargs->type; ll; ll=ll->next) {
if(debug['m'] > 2)
print("escexprcall: field type: %T\n", t);
if(!t->note || strcmp(t->note->s, safetag->s))
escexpr(&theSink, ll->n);
else
escexpr(N, ll->n);
if(t->down)
t=t->down;
}
return;
}
// fallthrough if we don't have enough information:
// can only assume all parameters are unsafe
// OCALLINTER always ends up here
if(debug['m']>1 && expr->op != OCALLINTER) {
// dump("escexprcall", expr);
print("escexprcall: %O, no nodes, no types: %N\n", expr->op, fn);
}
escexpr(&theSink, expr->left->left); // the this argument
for(ll=expr->list; ll; ll=ll->next)
escexpr(&theSink, ll->n);
}
// Store the link src->dst in dst, throwing out some quick wins.
static void
escflows(Node* dst, Node* src)
{
if(dst == nil || src == nil || dst == src)
return;
// Don't bother building a graph for scalars.
if (src->type && !haspointers(src->type))
return;
if(debug['m']>2)
print("%L::flows:: %hN <- %hN\n", lineno, dst, src);
// Assignments to global variables get lumped into theSink.
if (dst->op == ONAME && dst->class == PEXTERN)
dst = &theSink;
if (dst->escflowsrc == nil) {
dsts = list(dsts, dst);
dstcount++;
}
edgecount++;
dst->escflowsrc = list(dst->escflowsrc, src);
}
// Whenever we hit a reference node, the level goes up by one, and whenever
// we hit an OADDR, the level goes down by one. as long as we're on a level > 0
// finding an OADDR just means we're following the upstream of a dereference,
// so this address doesn't leak (yet).
// If level == 0, it means the /value/ of this node can reach the root of this flood.
// so if this node is an OADDR, it's argument should be marked as escaping iff
// it's currfn/loopdepth are different from the flood's root.
// Once an object has been moved to the heap, all of it's upstream should be considered
// escaping to the global scope.
static void
escflood(Node *dst)
{
NodeList *l;
switch(dst->op) {
case ONAME:
case OCLOSURE:
break;
default:
return;
}
if(debug['m']>1)
print("\nescflood:%d: dst %hN scope:%#S[%d]\n", floodgen, dst,
(dst->curfn && dst->curfn->nname) ? dst->curfn->nname->sym : S,
dst->escloopdepth);
for (l = dst->escflowsrc; l; l=l->next) {
floodgen++;
escwalk(0, dst, l->n);
}
}
static void
escwalk(int level, Node *dst, Node *src)
{
NodeList* ll;
int leaks;
if (src->escfloodgen == floodgen)
return;
src->escfloodgen = floodgen;
if(debug['m']>1)
print("escwalk: level:%d depth:%d %.*s %hN scope:%#S[%d]\n",
level, pdepth, pdepth, "\t\t\t\t\t\t\t\t\t\t", src,
(src->curfn && src->curfn->nname) ? src->curfn->nname->sym : S, src->escloopdepth);
pdepth++;
leaks = (level <= 0) && (dst->escloopdepth < src->escloopdepth);
switch(src->op) {
case ONAME:
if (src->class == PPARAM && leaks && src->esc == EscNone) {
src->esc = EscScope;
if(debug['m'])
print("%L:leaking param: %hN\n", src->lineno, src);
}
break;
case OADDR:
if (leaks)
addrescapes(src->left);
escwalk(level-1, dst, src->left);
break;
case OINDEX:
if(isfixedarray(src->type))
break;
case OSLICE:
case ODOTPTR:
case OINDEXMAP:
case OIND:
escwalk(level+1, dst, src->left);
}
for (ll=src->escflowsrc; ll; ll=ll->next)
escwalk(level, dst, ll->n);
pdepth--;
}
static void
esctag(Node *func)
{
Node *savefn;
NodeList *ll;
savefn = curfn;
curfn = func;
for(ll=curfn->dcl; ll; ll=ll->next) {
if(ll->n->op != ONAME || ll->n->class != PPARAM)
continue;
switch (ll->n->esc) {
case EscNone: // not touched by escflood
if (haspointers(ll->n->type)) // don't bother tagging for scalars
ll->n->paramfld->note = safetag;
case EscHeap: // touched by escflood, moved to heap
case EscScope: // touched by escflood, value leaves scope
break;
default:
fatal("messed up escape tagging: %N::%N", curfn, ll->n);
}
}
curfn = savefn;
}
......@@ -11,7 +11,7 @@
static void cgen_dcl(Node *n);
static void cgen_proc(Node *n, int proc);
static void checkgoto(Node*, Node*);
static void checkgoto(Node*, Node*);
static Label *labellist;
static Label *lastlabel;
......@@ -55,7 +55,7 @@ allocparams(void)
}
if(n->op != ONAME || n->class != PAUTO)
continue;
if (n->xoffset != BADWIDTH)
if(n->xoffset != BADWIDTH)
continue;
if(n->type == T)
continue;
......@@ -72,6 +72,96 @@ allocparams(void)
lineno = lno;
}
/*
* the address of n has been taken and might be used after
* the current function returns. mark any local vars
* as needing to move to the heap.
*/
void
addrescapes(Node *n)
{
char buf[100];
switch(n->op) {
default:
// probably a type error already.
// dump("addrescapes", n);
break;
case ONAME:
if(n == nodfp)
break;
// if this is a tmpname (PAUTO), it was tagged by tmpname as not escaping.
// on PPARAM it means something different.
if(n->class == PAUTO && n->esc == EscNever)
break;
if(!debug['s'] && n->esc != EscUnknown)
fatal("without escape analysis, only PAUTO's should have esc: %N", n);
switch(n->class) {
case PPARAMREF:
addrescapes(n->defn);
break;
case PPARAM:
case PPARAMOUT:
// if func param, need separate temporary
// to hold heap pointer.
// the function type has already been checked
// (we're in the function body)
// so the param already has a valid xoffset.
// expression to refer to stack copy
n->stackparam = nod(OPARAM, n, N);
n->stackparam->type = n->type;
n->stackparam->addable = 1;
if(n->xoffset == BADWIDTH)
fatal("addrescapes before param assignment");
n->stackparam->xoffset = n->xoffset;
// fallthrough
case PAUTO:
n->class |= PHEAP;
n->addable = 0;
n->ullman = 2;
n->xoffset = 0;
// create stack variable to hold pointer to heap
n->heapaddr = nod(ONAME, N, N);
n->heapaddr->type = ptrto(n->type);
snprint(buf, sizeof buf, "&%S", n->sym);
n->heapaddr->sym = lookup(buf);
n->heapaddr->class = PHEAP-1; // defer tempname to allocparams
n->heapaddr->ullman = 1;
n->curfn->dcl = list(n->curfn->dcl, n->heapaddr);
if(debug['s'])
n->esc = EscHeap;
if(debug['m'])
print("%L: moved to heap: %hN\n", n->lineno, n);
break;
}
break;
case OIND:
case ODOTPTR:
break;
case ODOT:
case OINDEX:
// ODOTPTR has already been introduced,
// so these are the non-pointer ODOT and OINDEX.
// In &x[0], if x is a slice, then x does not
// escape--the pointer inside x does, but that
// is always a heap pointer anyway.
if(!isslice(n->left->type))
addrescapes(n->left);
break;
}
}
void
clearlabels(void)
{
......@@ -753,7 +843,7 @@ tempname(Node *nn, Type *t)
if(stksize < 0)
fatal("tempname not during code generation");
if (curfn == N)
if(curfn == N)
fatal("no curfn for tempname");
if(t == T) {
......@@ -772,7 +862,7 @@ tempname(Node *nn, Type *t)
n->class = PAUTO;
n->addable = 1;
n->ullman = 1;
n->noescape = 1;
n->esc = EscNever;
n->curfn = curfn;
curfn->dcl = list(curfn->dcl, n);
......
......@@ -155,7 +155,6 @@ struct Type
{
uchar etype;
uchar chan;
uchar recur; // to detect loops
uchar trecur; // to detect loops
uchar printed;
uchar embedded; // TFIELD embedded type
......@@ -203,6 +202,15 @@ struct Type
};
#define T ((Type*)0)
enum
{
EscUnknown,
EscHeap,
EscScope,
EscNone,
EscNever,
};
struct Node
{
uchar op;
......@@ -215,7 +223,7 @@ struct Node
uchar embedded; // ODCLFIELD embedded type
uchar colas; // OAS resulting from :=
uchar diag; // already printed error about this
uchar noescape; // ONAME never move to heap
uchar esc; // EscXXX
uchar funcdepth;
uchar builtin; // built-in name, like len or close
uchar walkdef;
......@@ -266,6 +274,7 @@ struct Node
Node* defn;
Node* pack; // real package for import . names
Node* curfn; // function for local variables
Type* paramfld; // TFIELD for this PPARAM
// ONAME func param with PHEAP
Node* heapaddr; // temp holding heap address of param
......@@ -279,6 +288,11 @@ struct Node
// OPACK
Pkg* pkg;
// Escape analysis.
NodeList* escflowsrc; // flow(this, src)
int escloopdepth; // -1: global, 0: not set, function top level:1, increased inside function for every loop or label to mark scopes
int escfloodgen; // increased for every flood to detect loops
Sym* sym; // various
int32 vargen; // unique name for OTYPE/ONAME
int32 lineno;
......@@ -374,7 +388,6 @@ enum
OADDR,
OANDAND,
OAPPEND,
OARRAY,
OARRAYBYTESTR, OARRAYRUNESTR,
OSTRARRAYBYTE, OSTRARRAYRUNE,
OAS, OAS2, OAS2MAPW, OAS2FUNC, OAS2RECV, OAS2MAPR, OAS2DOTTYPE, OASOP,
......@@ -444,6 +457,7 @@ enum
// misc
ODDD,
ODDDARG,
// for back ends
OCMP, ODEC, OEXTEND, OINC, OREGISTER, OINDREG,
......@@ -910,6 +924,11 @@ void typedcl2(Type *pt, Type *t);
Node* typenod(Type *t);
NodeList* variter(NodeList *vl, Node *t, NodeList *el);
/*
* esc.c
*/
void escapes(void);
/*
* export.c
*/
......@@ -927,6 +946,7 @@ Type* pkgtype(Sym *s);
/*
* gen.c
*/
void addrescapes(Node *n);
void allocparams(void);
void cgen_as(Node *nl, Node *nr);
void cgen_callmeth(Node *n, int proc);
......@@ -1050,6 +1070,7 @@ void dumptypestructs(void);
Type* methodfunc(Type *f, Type*);
Node* typename(Type *t);
Sym* typesym(Type *t);
int haspointers(Type *t);
/*
* select.c
......
......@@ -235,24 +235,24 @@ main(int argc, char *argv[])
if(debug['f'])
frame(1);
// Process top-level declarations in four phases.
// Process top-level declarations in phases.
// Phase 1: const, type, and names and types of funcs.
// This will gather all the information about types
// and methods but doesn't depend on any of it.
// Phase 2: Variable assignments.
// To check interface assignments, depends on phase 1.
// Phase 3: Type check function bodies.
// Phase 4: Compile function bodies.
defercheckwidth();
for(l=xtop; l; l=l->next)
if(l->n->op != ODCL && l->n->op != OAS)
typecheck(&l->n, Etop);
// Phase 2: Variable assignments.
// To check interface assignments, depends on phase 1.
for(l=xtop; l; l=l->next)
if(l->n->op == ODCL || l->n->op == OAS)
typecheck(&l->n, Etop);
resumetypecopy();
resumecheckwidth();
// Phase 3: Type check function bodies.
for(l=xtop; l; l=l->next) {
if(l->n->op == ODCLFUNC || l->n->op == OCLOSURE) {
curfn = l->n;
......@@ -268,6 +268,11 @@ main(int argc, char *argv[])
if(nsavederrors+nerrors)
errorexit();
// Phase 3b: escape analysis.
if(debug['s'])
escapes();
// Phase 4: Compile function bodies.
for(l=xtop; l; l=l->next)
if(l->n->op == ODCLFUNC)
funccompile(l->n, 0);
......@@ -275,6 +280,7 @@ main(int argc, char *argv[])
if(nsavederrors+nerrors == 0)
fninit(xtop);
// Phase 4b: Compile all closures.
while(closures) {
l = closures;
closures = nil;
......@@ -283,6 +289,7 @@ main(int argc, char *argv[])
}
}
// Phase 5: check external declarations.
for(l=externdcl; l; l=l->next)
if(l->n->op == ONAME)
typecheck(&l->n, Erv);
......@@ -1739,7 +1746,6 @@ lexfini(void)
}
nodfp = nod(ONAME, N, N);
nodfp->noescape = 1;
nodfp->type = types[TINT32];
nodfp->xoffset = 0;
nodfp->class = PPARAM;
......
......@@ -139,6 +139,10 @@ exprfmt(Fmt *f, Node *n, int prec)
fmtprint(f, "(%#N)", n->left);
break;
case ODDDARG:
fmtprint(f, "... argument");
break;
case OREGISTER:
fmtprint(f, "%R", n->val.u.reg);
break;
......
......@@ -528,7 +528,7 @@ typestruct(Type *t)
return pkglookup(name, typepkg);
}
static int
int
haspointers(Type *t)
{
Type *t1;
......
......@@ -59,7 +59,7 @@ typecheckselect(Node *sel)
break;
case OAS2RECV:
// convert x, ok = <-c into OSELRECV(x, <-c) with ntest=ok
// convert x, ok = <-c into OSELRECV2(x, <-c) with ntest=ok
if(n->right->op != ORECV) {
yyerror("select assignment must have receive on right hand side");
break;
......@@ -73,6 +73,7 @@ typecheckselect(Node *sel)
case ORECV:
// convert <-c into OSELRECV(N, <-c)
n = nod(OSELRECV, N, n);
n->typecheck = 1;
ncase->left = n;
break;
......
......@@ -1094,8 +1094,8 @@ Jconv(Fmt *fp)
if(n->class != 0) {
s = "";
if (n->class & PHEAP) s = ",heap";
if ((n->class & ~PHEAP) < nelem(classnames))
if(n->class & PHEAP) s = ",heap";
if((n->class & ~PHEAP) < nelem(classnames))
fmtprint(fp, " class(%s%s)", classnames[n->class&~PHEAP], s);
else
fmtprint(fp, " class(%d?%s)", n->class&~PHEAP, s);
......@@ -1107,8 +1107,29 @@ Jconv(Fmt *fp)
if(n->funcdepth != 0)
fmtprint(fp, " f(%d)", n->funcdepth);
if(n->noescape != 0)
fmtprint(fp, " ne(%d)", n->noescape);
switch(n->esc) {
case EscUnknown:
break;
case EscHeap:
fmtprint(fp, " esc(h)");
break;
case EscScope:
fmtprint(fp, " esc(s)");
break;
case EscNone:
fmtprint(fp, " esc(no)");
break;
case EscNever:
if(!c)
fmtprint(fp, " esc(N)");
break;
default:
fmtprint(fp, " esc(%d)", n->esc);
break;
}
if(n->escloopdepth)
fmtprint(fp, " ld(%d)", n->escloopdepth);
if(!c && n->typecheck != 0)
fmtprint(fp, " tc(%d)", n->typecheck);
......@@ -1523,7 +1544,7 @@ Nconv(Fmt *fp)
switch(n->op) {
default:
if (fp->flags & FmtShort)
if(fp->flags & FmtShort)
fmtprint(fp, "%O%hJ", n->op, n);
else
fmtprint(fp, "%O%J", n->op, n);
......@@ -1532,13 +1553,13 @@ Nconv(Fmt *fp)
case ONAME:
case ONONAME:
if(n->sym == S) {
if (fp->flags & FmtShort)
if(fp->flags & FmtShort)
fmtprint(fp, "%O%hJ", n->op, n);
else
fmtprint(fp, "%O%J", n->op, n);
break;
}
if (fp->flags & FmtShort)
if(fp->flags & FmtShort)
fmtprint(fp, "%O-%S%hJ", n->op, n->sym, n);
else
fmtprint(fp, "%O-%S%J", n->op, n->sym, n);
......@@ -3176,7 +3197,7 @@ genwrapper(Type *rcvr, Type *method, Sym *newnam, int iface)
int isddd;
Val v;
if(debug['r'])
if(0 && debug['r'])
print("genwrapper rcvrtype=%T method=%T newnam=%S\n",
rcvr, method, newnam);
......@@ -3453,7 +3474,7 @@ listsort(NodeList** l, int(*f)(Node*, Node*))
listsort(&l1, f);
listsort(&l2, f);
if ((*f)(l1->n, l2->n) < 0) {
if((*f)(l1->n, l2->n) < 0) {
*l = l1;
} else {
*l = l2;
......@@ -3469,7 +3490,7 @@ listsort(NodeList** l, int(*f)(Node*, Node*))
// l1 is last one from l1 that is < l2
le = l1->next; // le is the rest of l1, first one that is >= l2
if (le != nil)
if(le != nil)
le->end = (*l)->end;
(*l)->end = l1; // cut *l at l1
......
......@@ -21,7 +21,6 @@ static void typecheckaste(int, Node*, int, Type*, NodeList*, char*);
static Type* lookdot1(Sym *s, Type *t, Type *f, int);
static int nokeys(NodeList*);
static void typecheckcomplit(Node**);
static void addrescapes(Node*);
static void typecheckas2(Node*);
static void typecheckas(Node*);
static void typecheckfunc(Node*);
......@@ -337,7 +336,7 @@ reswitch:
*/
case OIND:
ntop = Erv | Etype;
if(!(top & Eaddr))
if(!(top & Eaddr)) // The *x in &*x is not an indirect.
ntop |= Eindir;
l = typecheck(&n->left, ntop);
if((t = l->type) == T)
......@@ -535,7 +534,9 @@ reswitch:
l = n->left;
if((t = l->type) == T)
goto error;
if(!(top & Eindir) && !n->etype)
// top&Eindir means this is &x in *&x. (or the arg to built-in print)
// n->etype means code generator flagged it as non-escaping.
if(!(top & Eindir) && !n->etype && !debug['s'])
addrescapes(n->left);
n->type = ptrto(t);
goto ret;
......@@ -1028,6 +1029,8 @@ reswitch:
}
n->left = args->n;
n->right = args->next->n;
args = nil;
n->list = nil;
n->type = types[TINT];
typecheck(&n->left, Erv);
typecheck(&n->right, Erv);
......@@ -1038,7 +1041,7 @@ reswitch:
// copy([]byte, string)
if(isslice(n->left->type) && n->right->type->etype == TSTRING) {
if (n->left->type->type == types[TUINT8])
if(n->left->type->type == types[TUINT8])
goto ret;
yyerror("arguments to copy have different element types: %lT and string", n->left->type);
goto error;
......@@ -1602,7 +1605,8 @@ lookdot(Node *n, Type *t, int dostrcmp)
if(!eqtype(rcvr, tt)) {
if(rcvr->etype == tptr && eqtype(rcvr->type, tt)) {
checklvalue(n->left, "call pointer method on");
addrescapes(n->left);
if(!debug['s'])
addrescapes(n->left);
n->left = nod(OADDR, n->left, N);
n->left->implicit = 1;
typecheck(&n->left, Etype|Erv);
......@@ -2156,82 +2160,6 @@ error:
lineno = lno;
}
/*
* the address of n has been taken and might be used after
* the current function returns. mark any local vars
* as needing to move to the heap.
*/
static void
addrescapes(Node *n)
{
char buf[100];
switch(n->op) {
default:
// probably a type error already.
// dump("addrescapes", n);
break;
case ONAME:
if(n->noescape)
break;
switch(n->class) {
case PPARAMREF:
addrescapes(n->defn);
break;
case PPARAM:
case PPARAMOUT:
// if func param, need separate temporary
// to hold heap pointer.
// the function type has already been checked
// (we're in the function body)
// so the param already has a valid xoffset.
// expression to refer to stack copy
n->stackparam = nod(OPARAM, n, N);
n->stackparam->type = n->type;
n->stackparam->addable = 1;
if(n->xoffset == BADWIDTH)
fatal("addrescapes before param assignment");
n->stackparam->xoffset = n->xoffset;
n->xoffset = 0;
// fallthrough
case PAUTO:
n->class |= PHEAP;
n->addable = 0;
n->ullman = 2;
n->xoffset = 0;
// create stack variable to hold pointer to heap
n->heapaddr = nod(ONAME, N, N);
n->heapaddr->type = ptrto(n->type);
snprint(buf, sizeof buf, "&%S", n->sym);
n->heapaddr->sym = lookup(buf);
n->heapaddr->class = PHEAP-1; // defer tempname to allocparams
n->heapaddr->ullman = 1;
n->curfn->dcl = list(n->curfn->dcl, n->heapaddr);
break;
}
break;
case OIND:
case ODOTPTR:
break;
case ODOT:
case OINDEX:
// ODOTPTR has already been introduced,
// so these are the non-pointer ODOT and OINDEX.
// In &x[0], if x is a slice, then x does not
// escape--the pointer inside x does, but that
// is always a heap pointer anyway.
if(!isslice(n->left->type))
addrescapes(n->left);
break;
}
}
/*
* lvalue etc
*/
......@@ -2462,7 +2390,6 @@ typecheckfunc(Node *n)
{
Type *t, *rcvr;
//dump("nname", n->nname);
typecheck(&n->nname, Erv | Easgn);
if((t = n->nname->type) == T)
return;
......@@ -2772,6 +2699,7 @@ typecheckdef(Node *n)
if(n->ntype != N) {
typecheck(&n->ntype, Etype);
n->type = n->ntype->type;
if(n->type == T) {
n->diag = 1;
goto ret;
......
// errchk -0 $G -sm $D/$F.go
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package foo
import "unsafe"
var gxx *int
func foo1(x int) { // ERROR "moved to heap: NAME-x"
gxx = &x
}
func foo2(yy *int) { // ERROR "leaking param: NAME-yy"
gxx = yy
}
func foo3(x int) *int { // ERROR "moved to heap: NAME-x"
return &x
}
type T *T
func foo3b(t T) { // ERROR "leaking param: NAME-t"
*t = t
}
// xx isn't going anywhere, so use of yy is ok
func foo4(xx, yy *int) {
xx = yy
}
// xx isn't going anywhere, so taking address of yy is ok
func foo5(xx **int, yy *int) {
xx = &yy
}
func foo6(xx **int, yy *int) { // ERROR "leaking param: NAME-yy"
*xx = yy
}
func foo7(xx **int, yy *int) {
**xx = *yy
}
func foo8(xx, yy *int) int {
xx = yy
return *xx
}
func foo9(xx, yy *int) *int { // ERROR "leaking param: NAME-xx" "leaking param: NAME-yy"
xx = yy
return xx
}
func foo10(xx, yy *int) {
*xx = *yy
}
func foo11() int {
x, y := 0, 42
xx := &x
yy := &y
*xx = *yy
return x
}
var xxx **int
func foo12(yyy **int) { // ERROR "leaking param: NAME-yyy"
xxx = yyy
}
func foo13(yyy **int) {
*xxx = *yyy
}
func foo14(yyy **int) {
**xxx = **yyy
}
func foo15(yy *int) { // ERROR "moved to heap: NAME-yy"
xxx = &yy
}
func foo16(yy *int) { // ERROR "leaking param: NAME-yy"
*xxx = yy
}
func foo17(yy *int) {
**xxx = *yy
}
func foo18(y int) { // ERROR "moved to heap: "NAME-y"
*xxx = &y
}
func foo19(y int) {
**xxx = y
}
type Bar struct {
i int
ii *int
}
func NewBar() *Bar {
return &Bar{ 42, nil }
}
func NewBarp(x *int) *Bar { // ERROR "leaking param: NAME-x"
return &Bar{ 42, x }
}
func NewBarp2(x *int) *Bar {
return &Bar{ *x, nil }
}
func (b *Bar) NoLeak() int {
return *(b.ii)
}
func (b *Bar) AlsoNoLeak() *int {
return b.ii
}
type Bar2 struct {
i [12]int
ii []int
}
func NewBar2() *Bar2 {
return &Bar2{ [12]int{ 42 }, nil }
}
func (b *Bar2) NoLeak() int {
return b.i[0]
}
func (b *Bar2) Leak() []int { // ERROR "leaking param: NAME-b"
return b.i[:]
}
func (b *Bar2) AlsoNoLeak() []int {
return b.ii[0:1]
}
func (b *Bar2) LeakSelf() { // ERROR "leaking param: NAME-b"
b.ii = b.i[0:4]
}
func (b *Bar2) LeakSelf2() { // ERROR "leaking param: NAME-b"
var buf []int
buf = b.i[0:]
b.ii = buf
}
func foo21() func() int {
x := 42 // ERROR "moved to heap: NAME-x"
return func() int {
return x
}
}
func foo22() int {
x := 42
return func() int {
return x
}()
}
func foo23(x int) func() int { // ERROR "moved to heap: NAME-x"
return func() int {
return x
}
}
func foo23a(x int) (func() int) { // ERROR "moved to heap: NAME-x"
f := func() int {
return x
}
return f
}
func foo23b(x int) *(func() int) { // ERROR "moved to heap: NAME-x"
f := func() int { return x } // ERROR "moved to heap: NAME-f"
return &f
}
func foo24(x int) int {
return func() int {
return x
}()
}
var x *int
func fooleak(xx *int) int { // ERROR "leaking param: NAME-xx"
x = xx
return *x
}
func foonoleak(xx *int) int {
return *x + *xx
}
func foo31(x int) int { // ERROR "moved to heap: NAME-x"
return fooleak(&x)
}
func foo32(x int) int {
return foonoleak(&x)
}
type Foo struct {
xx *int
x int
}
var F Foo
var pf *Foo
func (f *Foo) fooleak() { // ERROR "leaking param: NAME-f"
pf = f
}
func (f *Foo) foonoleak() {
F.x = f.x
}
func (f *Foo) Leak() { // ERROR "leaking param: NAME-f"
f.fooleak()
}
func (f *Foo) NoLeak() {
f.foonoleak()
}
func foo41(x int) { // ERROR "moved to heap: NAME-x"
F.xx = &x
}
func (f *Foo) foo42(x int) { // ERROR "moved to heap: NAME-x"
f.xx = &x
}
func foo43(f *Foo, x int) { // ERROR "moved to heap: NAME-x"
f.xx = &x
}
func foo44(yy *int) { // ERROR "leaking param: NAME-yy"
F.xx = yy
}
func (f *Foo) foo45() {
F.x = f.x
}
func (f *Foo) foo46() {
F.xx = f.xx
}
func (f *Foo) foo47() { // ERROR "leaking param: NAME-f"
f.xx = &f.x
}
var ptrSlice []*int
func foo50(i *int) { // ERROR "leaking param: NAME-i"
ptrSlice[0] = i
}
var ptrMap map[*int]*int
func foo51(i *int) { // ERROR "leaking param: NAME-i"
ptrMap[i] = i
}
func indaddr1(x int) *int { // ERROR "moved to heap: NAME-x"
return &x
}
func indaddr2(x *int) *int { // ERROR "leaking param: NAME-x"
return *&x
}
func indaddr3(x *int32) *int { // ERROR "leaking param: NAME-x"
return *(**int)(unsafe.Pointer(&x))
}
// From package math:
func Float32bits(f float32) uint32 {
return *(*uint32)(unsafe.Pointer(&f))
}
func Float32frombits(b uint32) float32 {
return *(*float32)(unsafe.Pointer(&b))
}
func Float64bits(f float64) uint64 {
return *(*uint64)(unsafe.Pointer(&f))
}
func Float64frombits(b uint64) float64 {
return *(*float64)(unsafe.Pointer(&b))
}
// contrast with
func float64bitsptr(f float64) *uint64 { // ERROR "moved to heap: NAME-f"
return (*uint64)(unsafe.Pointer(&f))
}
func float64ptrbitsptr(f *float64) *uint64 { // ERROR "leaking param: NAME-f"
return (*uint64)(unsafe.Pointer(f))
}
func typesw(i interface{}) *int { // ERROR "leaking param: NAME-i"
switch val := i.(type) {
case *int:
return val
case *int8:
v := int(*val) // ERROR "moved to heap: NAME-v"
return &v
}
return nil
}
func exprsw(i *int) *int { // ERROR "leaking param: NAME-i"
switch j := i; *j + 110 {
case 12:
return j
case 42:
return nil
}
return nil
}
// assigning to an array element is like assigning to the array
func foo60(i *int) *int { // ERROR "leaking param: NAME-i"
var a [12]*int
a[0] = i
return a[1]
}
func foo60a(i *int) *int {
var a [12]*int
a[0] = i
return nil
}
// assigning to a struct field is like assigning to the struct
func foo61(i *int) *int { // ERROR "leaking param: NAME-i"
type S struct {
a,b *int
}
var s S
s.a = i
return s.b
}
func foo61a(i *int) *int {
type S struct {
a,b *int
}
var s S
s.a = i
return nil
}
// assigning to a struct field is like assigning to the struct but
// here this subtlety is lost, since s.a counts as an assignment to a
// track-losing dereference.
func foo62(i *int) *int { // ERROR "leaking param: NAME-i"
type S struct {
a,b *int
}
s := new(S)
s.a = i
return nil // s.b
}
type M interface { M() }
func foo63(m M) {
}
func foo64(m M) { // ERROR "leaking param: NAME-m"
m.M()
}
type MV int
func (MV) M() {}
func foo65() {
var mv MV
foo63(&mv)
}
func foo66() {
var mv MV // ERROR "moved to heap: NAME-mv"
foo64(&mv)
}
func foo67() {
var mv MV
foo63(mv)
}
func foo68() {
var mv MV
foo64(mv) // escapes but it's an int so irrelevant
}
func foo69(m M) { // ERROR "leaking param: NAME-m"
foo64(m)
}
func foo70(mv1 *MV, m M) { // ERROR "leaking param: NAME-mv1" "leaking param: NAME-m"
m = mv1
foo64(m)
}
func foo71(x *int) []*int { // ERROR "leaking param: NAME-x"
var y []*int
y = append(y, x)
return y
}
func foo71a(x int) []*int { // ERROR "moved to heap: NAME-x"
var y []*int
y = append(y, &x)
return y
}
func foo72() {
var x int
var y [1]*int
y[0] = &x
}
func foo72aa() [10]*int {
var x int // ERROR "moved to heap: NAME-x"
var y [10]*int
y[0] = &x
return y
}
func foo72a() {
var y [10]*int
for i := 0; i < 10; i++ {
x := i // not moved to heap b/c y goes nowhere
y[i] = &x
}
return
}
func foo72b() [10]*int {
var y [10]*int
for i := 0; i < 10; i++ {
x := i // ERROR "moved to heap: NAME-x"
y[i] = &x
}
return y
}
// issue 2145
func foo73() {
s := []int{3,2,1}
for _, v := range s {
vv := v // ERROR "moved to heap: NAME-vv"
defer func() { // "func literal escapes its scope" "&vv escapes its scope"
println(vv)
}()
}
}
func foo74() {
s := []int{3,2,1}
for _, v := range s {
vv := v // ERROR "moved to heap: NAME-vv"
fn := func() { // "func literal escapes its scope" "&vv escapes its scope"
println(vv)
}
defer fn()
}
}
func myprint(y *int, x ...interface{}) *int { // ERROR "leaking param: NAME-y"
return y
}
func myprint1(y *int, x ...interface{}) *interface{} { // ERROR "leaking param: NAME-x"
return &x[0]
}
func foo75(z *int) { // ERROR "leaking param: NAME-z"
myprint(z, 1, 2, 3)
}
func foo75a(z *int) {
myprint1(z, 1, 2, 3) // "[.][.][.] argument escapes to heap"
}
func foo76(z *int) {
myprint(nil, z)
}
func foo76a(z *int) { // ERROR "leaking param: NAME-z"
myprint1(nil, z) // "[.][.][.] argument escapes to heap"
}
func foo76b() {
myprint(nil, 1, 2, 3)
}
func foo76c() {
myprint1(nil, 1, 2, 3) // "[.][.][.] argument escapes to heap"
}
func foo76d() {
defer myprint(nil, 1, 2, 3)
}
func foo76e() {
defer myprint1(nil, 1, 2, 3) // "[.][.][.] argument escapes to heap"
}
func foo76f() {
for {
defer myprint(nil, 1, 2, 3) // "[.][.][.] argument escapes its scope"
}
}
func foo76g() {
for {
defer myprint1(nil, 1, 2, 3) // "[.][.][.] argument escapes to heap"
}
}
func foo77(z []interface{}) {
myprint(nil, z...) // z does not escape
}
func foo77a(z []interface{}) { // ERROR "leaking param: NAME-z"
myprint1(nil, z...)
}
func foo78(z int) *int { // ERROR "moved to heap: NAME-z"
return &z // "&z escapes"
}
func foo78a(z int) *int { // ERROR "moved to heap: NAME-z"
y := &z
x := &y
return *x // really return y
}
func foo79() *int {
return new(int) // "moved to heap: new[(]int[)]"
}
func foo80() *int {
var z *int
for {
z = new(int) // "new[(]int[)] escapes its scope"
}
_ = z
return nil
}
func foo81() *int {
for {
z := new(int)
_ = z
}
return nil
}
type Fooer interface {
Foo()
}
type LimitedFooer struct {
Fooer
N int64
}
func LimitFooer(r Fooer, n int64) Fooer { // ERROR "leaking param: NAME-r"
return &LimitedFooer{r, n}
}
func foo90(x *int) map[*int]*int { // ERROR "leaking param: NAME-x"
return map[*int]*int{ nil: x }
}
func foo91(x *int) map[*int]*int { // ERROR "leaking param: NAME-x"
return map[*int]*int{ x:nil }
}
func foo92(x *int) [2]*int { // ERROR "leaking param: NAME-x"
return [2]*int{ x, nil }
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment