Commit 8971cf23 authored by Robert Griesemer's avatar Robert Griesemer

daily snapshot:

- separating printing of AST and documentation
- astprinter: will subsume ast printing functionality of printer
- docprinter: will subsume doc printing functionality of printer
        also: more logic to collect all the documentation pertaining
	      to all files of a package
- parser: some cleanups, stricter syntax checks
- gds: hooks to test new doc printer (disabled)

R=r
OCL=26915
CL=26915
parent 8e54729b
......@@ -28,7 +28,7 @@ install: pretty
clean:
rm -f pretty *.6 *.a *~
gds.6: utils.6 platform.6 compilation.6 printer.6
gds.6: utils.6 platform.6 compilation.6 printer.6 docprinter.6 astprinter.6
pretty.6: platform.6 printer.6 compilation.6
......@@ -46,5 +46,9 @@ platform.6: utils.6
printer.6: utils.6 ast.6 symboltable.6 template.6
astprinter.6: utils.6 ast.6 symboltable.6 template.6
docprinter.6: ast.6 astprinter.6 template.6
%.6: %.go
$(G) $(F) $<
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package astPrinter
import (
"os";
"io";
"vector";
"tabwriter";
"flag";
"fmt";
"strings";
"utf8";
"unicode";
"utils";
"token";
"ast";
"template";
"symboltable";
)
var (
debug = flag.Bool("ast_debug", false, "print debugging information");
// layout control
newlines = flag.Bool("ast_newlines", false, "respect newlines in source");
maxnewlines = flag.Int("ast_maxnewlines", 3, "max. number of consecutive newlines");
// formatting control
comments = flag.Bool("ast_comments", true, "print comments");
optsemicolons = flag.Bool("ast_optsemicolons", false, "print optional semicolons");
)
// When we don't have a position use nopos.
// TODO make sure we always have a position.
var nopos token.Position;
// ----------------------------------------------------------------------------
// Elementary support
func unimplemented() {
panic("unimplemented");
}
func unreachable() {
panic("unreachable");
}
func assert(pred bool) {
if !pred {
panic("assertion failed");
}
}
// TODO this should be an AST method
func isExported(name *ast.Ident) bool {
ch, len := utf8.DecodeRune(name.Lit);
return unicode.IsUpper(ch);
}
func hasExportedNames(names []*ast.Ident) bool {
for i, name := range names {
if isExported(name) {
return true;
}
}
return false;
}
// ----------------------------------------------------------------------------
// ASTPrinter
// Separators - printed in a delayed fashion, depending on context.
const (
none = iota;
blank;
tab;
comma;
semicolon;
)
// Semantic states - control formatting.
const (
normal = iota;
opening_scope; // controls indentation, scope level
closing_scope; // controls indentation, scope level
inside_list; // controls extra line breaks
)
type Printer struct {
// output
text io.Write;
// formatting control
html bool;
full bool; // if false, print interface only; print all otherwise
// comments
comments []*ast.Comment; // the list of unassociated comments
cindex int; // the current comment group index
cpos token.Position; // the position of the next comment group
// current state
lastpos token.Position; // position after last string
level int; // scope level
indentation int; // indentation level (may be different from scope level)
// formatting parameters
opt_semi bool; // // true if semicolon separator is optional in statement list
separator int; // pending separator
newlines int; // pending newlines
// semantic state
state int; // current semantic state
laststate int; // state for last string
// expression precedence
prec int;
}
func (P *Printer) hasComment(pos token.Position) bool {
return *comments && P.cpos.Offset < pos.Offset;
}
func (P *Printer) nextComments() {
P.cindex++;
if P.comments != nil && P.cindex < len(P.comments) && P.comments[P.cindex] != nil {
P.cpos = P.comments[P.cindex].Pos();
} else {
P.cpos = token.Position{1<<30, 1<<30, 1}; // infinite
}
}
func (P *Printer) Init(text io.Write, comments []*ast.Comment, html bool) {
// writers
P.text = text;
// formatting control
P.html = html;
// comments
P.comments = comments;
P.cindex = -1;
P.nextComments();
// formatting parameters & semantic state initialized correctly by default
// expression precedence
P.prec = token.LowestPrec;
}
// ----------------------------------------------------------------------------
// Printing support
func (P *Printer) htmlEscape(s string) string {
if P.html {
var esc string;
for i := 0; i < len(s); i++ {
switch s[i] {
case '<': esc = "&lt;";
case '&': esc = "&amp;";
default: continue;
}
return s[0 : i] + esc + P.htmlEscape(s[i+1 : len(s)]);
}
}
return s;
}
// Reduce contiguous sequences of '\t' in a string to a single '\t'.
func untabify(s string) string {
for i := 0; i < len(s); i++ {
if s[i] == '\t' {
j := i;
for j < len(s) && s[j] == '\t' {
j++;
}
if j-i > 1 { // more then one tab
return s[0 : i+1] + untabify(s[j : len(s)]);
}
}
}
return s;
}
func (P *Printer) Printf(format string, s ...) {
n, err := fmt.Fprintf(P.text, format, s);
if err != nil {
panic("print error - exiting");
}
}
func (P *Printer) newline(n int) {
if n > 0 {
m := int(*maxnewlines);
if n > m {
n = m;
}
for n > 0 {
P.Printf("\n");
n--;
}
for i := P.indentation; i > 0; i-- {
P.Printf("\t");
}
}
}
func (P *Printer) TaggedString(pos token.Position, tag, s, endtag string) {
// use estimate for pos if we don't have one
offs := pos.Offset;
if offs == 0 {
offs = P.lastpos.Offset;
}
// --------------------------------
// print pending separator, if any
// - keep track of white space printed for better comment formatting
// TODO print white space separators after potential comments and newlines
// (currently, we may get trailing white space before a newline)
trailing_char := 0;
switch P.separator {
case none: // nothing to do
case blank:
P.Printf(" ");
trailing_char = ' ';
case tab:
P.Printf("\t");
trailing_char = '\t';
case comma:
P.Printf(",");
if P.newlines == 0 {
P.Printf(" ");
trailing_char = ' ';
}
case semicolon:
if P.level > 0 { // no semicolons at level 0
P.Printf(";");
if P.newlines == 0 {
P.Printf(" ");
trailing_char = ' ';
}
}
default: panic("UNREACHABLE");
}
P.separator = none;
// --------------------------------
// interleave comments, if any
nlcount := 0;
if P.full {
for ; P.hasComment(pos); P.nextComments() {
// we have a comment group that comes before the string
comment := P.comments[P.cindex];
ctext := string(comment.Text); // TODO get rid of string conversion here
// classify comment (len(ctext) >= 2)
//-style comment
if nlcount > 0 || P.cpos.Offset == 0 {
// only white space before comment on this line
// or file starts with comment
// - indent
if !*newlines && P.cpos.Offset != 0 {
nlcount = 1;
}
P.newline(nlcount);
nlcount = 0;
} else {
// black space before comment on this line
if ctext[1] == '/' {
//-style comment
// - put in next cell unless a scope was just opened
// in which case we print 2 blanks (otherwise the
// entire scope gets indented like the next cell)
if P.laststate == opening_scope {
switch trailing_char {
case ' ': P.Printf(" "); // one space already printed
case '\t': // do nothing
default: P.Printf(" ");
}
} else {
if trailing_char != '\t' {
P.Printf("\t");
}
}
} else {
/*-style comment */
// - print surrounded by blanks
if trailing_char == 0 {
P.Printf(" ");
}
ctext += " ";
}
}
// print comment
if *debug {
P.Printf("[%d]", P.cpos.Offset);
}
// calling untabify increases the change for idempotent output
// since tabs in comments are also interpreted by tabwriter
P.Printf("%s", P.htmlEscape(untabify(ctext)));
}
// At this point we may have nlcount > 0: In this case we found newlines
// that were not followed by a comment. They are recognized (or not) when
// printing newlines below.
}
// --------------------------------
// interpret state
// (any pending separator or comment must be printed in previous state)
switch P.state {
case normal:
case opening_scope:
case closing_scope:
P.indentation--;
case inside_list:
default:
panic("UNREACHABLE");
}
// --------------------------------
// print pending newlines
if *newlines && (P.newlines > 0 || P.state == inside_list) && nlcount > P.newlines {
// Respect additional newlines in the source, but only if we
// enabled this feature (newlines.BVal()) and we are expecting
// newlines (P.newlines > 0 || P.state == inside_list).
// Otherwise - because we don't have all token positions - we
// get funny formatting.
P.newlines = nlcount;
}
nlcount = 0;
P.newline(P.newlines);
P.newlines = 0;
// --------------------------------
// print string
if *debug {
P.Printf("[%d]", pos);
}
P.Printf("%s%s%s", tag, P.htmlEscape(s), endtag);
// --------------------------------
// interpret state
switch P.state {
case normal:
case opening_scope:
P.level++;
P.indentation++;
case closing_scope:
P.level--;
case inside_list:
default:
panic("UNREACHABLE");
}
P.laststate = P.state;
P.state = none;
// --------------------------------
// done
P.opt_semi = false;
pos.Offset += len(s); // rough estimate
pos.Column += len(s); // rough estimate
P.lastpos = pos;
}
func (P *Printer) String(pos token.Position, s string) {
P.TaggedString(pos, "", s, "");
}
func (P *Printer) Token(pos token.Position, tok token.Token) {
P.String(pos, tok.String());
//P.TaggedString(pos, "<b>", tok.String(), "</b>");
}
func (P *Printer) Error(pos token.Position, tok token.Token, msg string) {
fmt.Printf("\ninternal printing error: pos = %d, tok = %s, %s\n", pos.Offset, tok.String(), msg);
panic();
}
// ----------------------------------------------------------------------------
// HTML support
func (P *Printer) HtmlIdentifier(x *ast.Ident) {
P.String(x.Pos(), string(x.Lit));
/*
obj := x.Obj;
if P.html && obj.Kind != symbolTable.NONE {
// depending on whether we have a declaration or use, generate different html
// - no need to htmlEscape ident
id := utils.IntToString(obj.Id, 10);
if x.Loc_ == obj.Pos {
// probably the declaration of x
P.TaggedString(x.Loc_, `<a name="id` + id + `">`, obj.Ident, `</a>`);
} else {
// probably not the declaration of x
P.TaggedString(x.Loc_, `<a href="#id` + id + `">`, obj.Ident, `</a>`);
}
} else {
P.String(x.Loc_, obj.Ident);
}
*/
}
func (P *Printer) HtmlPackageName(pos token.Position, name string) {
if P.html {
sname := name[1 : len(name)-1]; // strip quotes TODO do this elsewhere eventually
// TODO CAPITAL HACK BELOW FIX THIS
P.TaggedString(pos, `"<a href="/src/lib/` + sname + `.go">`, sname, `</a>"`);
} else {
P.String(pos, name);
}
}
// ----------------------------------------------------------------------------
// Support
func (P *Printer) Expr(x ast.Expr)
func (P *Printer) Idents(list []*ast.Ident, full bool) int {
n := 0;
for i, x := range list {
if n > 0 {
P.Token(nopos, token.COMMA);
P.separator = blank;
P.state = inside_list;
}
if full || isExported(x) {
P.Expr(x);
n++;
}
}
return n;
}
func (P *Printer) Exprs(list []ast.Expr) {
for i, x := range list {
if i > 0 {
P.Token(nopos, token.COMMA);
P.separator = blank;
P.state = inside_list;
}
P.Expr(x);
}
}
func (P *Printer) Parameters(list []*ast.Field) {
P.Token(nopos, token.LPAREN);
if len(list) > 0 {
for i, par := range list {
if i > 0 {
P.separator = comma;
}
n := P.Idents(par.Names, true);
if n > 0 {
P.separator = blank
};
P.Expr(par.Type);
}
}
P.Token(nopos, token.RPAREN);
}
// Returns the separator (semicolon or none) required if
// the type is terminating a declaration or statement.
func (P *Printer) Signature(params, result []*ast.Field) {
P.Parameters(params);
if result != nil {
P.separator = blank;
if len(result) == 1 && result[0].Names == nil {
// single anonymous result
// => no parentheses needed unless it's a function type
fld := result[0];
if dummy, is_ftyp := fld.Type.(*ast.FunctionType); !is_ftyp {
P.Expr(fld.Type);
return;
}
}
P.Parameters(result);
}
}
func (P *Printer) Fields(lbrace token.Position, list []*ast.Field, rbrace token.Position, is_interface bool) {
P.state = opening_scope;
P.separator = blank;
P.Token(lbrace, token.LBRACE);
if len(list) > 0 {
P.newlines = 1;
for i, fld := range list {
if i > 0 {
P.separator = semicolon;
P.newlines = 1;
}
n := P.Idents(fld.Names, P.full);
if n > 0 {
// at least one identifier
P.separator = tab
};
if n > 0 || len(fld.Names) == 0 {
// at least one identifier or anonymous field
if is_interface {
if ftyp, is_ftyp := fld.Type.(*ast.FunctionType); is_ftyp {
P.Signature(ftyp.Params, ftyp.Results);
} else {
P.Expr(fld.Type);
}
} else {
P.Expr(fld.Type);
if fld.Tag != nil {
P.separator = tab;
P.Expr(&ast.StringList{fld.Tag});
}
}
}
}
P.newlines = 1;
}
P.state = closing_scope;
P.Token(rbrace, token.RBRACE);
P.opt_semi = true;
}
// ----------------------------------------------------------------------------
// Expressions
func (P *Printer) Expr1(x ast.Expr, prec1 int)
func (P *Printer) Stmt(s ast.Stmt)
func (P *Printer) DoBadExpr(x *ast.BadExpr) {
P.String(nopos, "BadExpr");
}
func (P *Printer) DoIdent(x *ast.Ident) {
P.HtmlIdentifier(x);
}
func (P *Printer) DoBinaryExpr(x *ast.BinaryExpr) {
prec := x.Op.Precedence();
if prec < P.prec {
P.Token(nopos, token.LPAREN);
}
P.Expr1(x.X, prec);
P.separator = blank;
P.Token(x.OpPos, x.Op);
P.separator = blank;
P.Expr1(x.Y, prec);
if prec < P.prec {
P.Token(nopos, token.RPAREN);
}
}
func (P *Printer) DoKeyValueExpr(x *ast.KeyValueExpr) {
P.Expr(x.Key);
P.separator = blank;
P.Token(x.Colon, token.COLON);
P.separator = blank;
P.Expr(x.Value);
}
func (P *Printer) DoStarExpr(x *ast.StarExpr) {
P.Token(x.Pos(), token.MUL);
P.Expr(x.X);
}
func (P *Printer) DoUnaryExpr(x *ast.UnaryExpr) {
prec := token.UnaryPrec;
if prec < P.prec {
P.Token(nopos, token.LPAREN);
}
P.Token(x.Pos(), x.Op);
if x.Op == token.RANGE {
P.separator = blank;
}
P.Expr1(x.X, prec);
if prec < P.prec {
P.Token(nopos, token.RPAREN);
}
}
func (P *Printer) DoIntLit(x *ast.IntLit) {
// TODO get rid of string conversion here
P.String(x.Pos(), string(x.Lit));
}
func (P *Printer) DoFloatLit(x *ast.FloatLit) {
// TODO get rid of string conversion here
P.String(x.Pos(), string(x.Lit));
}
func (P *Printer) DoCharLit(x *ast.CharLit) {
// TODO get rid of string conversion here
P.String(x.Pos(), string(x.Lit));
}
func (P *Printer) DoStringLit(x *ast.StringLit) {
// TODO get rid of string conversion here
P.String(x.Pos(), string(x.Lit));
}
func (P *Printer) DoStringList(x *ast.StringList) {
for i, x := range x.Strings {
if i > 0 {
P.separator = blank;
}
P.DoStringLit(x);
}
}
func (P *Printer) DoFunctionType(x *ast.FunctionType)
func (P *Printer) DoFunctionLit(x *ast.FunctionLit) {
P.DoFunctionType(x.Type);
P.separator = blank;
P.Stmt(x.Body);
P.newlines = 0;
}
func (P *Printer) DoParenExpr(x *ast.ParenExpr) {
P.Token(x.Pos(), token.LPAREN);
P.Expr(x.X);
P.Token(x.Rparen, token.RPAREN);
}
func (P *Printer) DoSelectorExpr(x *ast.SelectorExpr) {
P.Expr1(x.X, token.HighestPrec);
P.Token(nopos, token.PERIOD);
P.Expr1(x.Sel, token.HighestPrec);
}
func (P *Printer) DoTypeAssertExpr(x *ast.TypeAssertExpr) {
P.Expr1(x.X, token.HighestPrec);
P.Token(nopos, token.PERIOD);
P.Token(nopos, token.LPAREN);
P.Expr(x.Type);
P.Token(nopos, token.RPAREN);
}
func (P *Printer) DoIndexExpr(x *ast.IndexExpr) {
P.Expr1(x.X, token.HighestPrec);
P.Token(nopos, token.LBRACK);
P.Expr(x.Index);
P.Token(nopos, token.RBRACK);
}
func (P *Printer) DoSliceExpr(x *ast.SliceExpr) {
P.Expr1(x.X, token.HighestPrec);
P.Token(nopos, token.LBRACK);
P.Expr(x.Begin);
P.Token(nopos, token.COLON);
P.Expr(x.End);
P.Token(nopos, token.RBRACK);
}
func (P *Printer) DoCallExpr(x *ast.CallExpr) {
P.Expr1(x.Fun, token.HighestPrec);
P.Token(x.Lparen, token.LPAREN);
P.Exprs(x.Args);
P.Token(x.Rparen, token.RPAREN);
}
func (P *Printer) DoCompositeLit(x *ast.CompositeLit) {
P.Expr1(x.Type, token.HighestPrec);
P.Token(x.Lbrace, token.LBRACE);
P.Exprs(x.Elts);
P.Token(x.Rbrace, token.RBRACE);
}
func (P *Printer) DoEllipsis(x *ast.Ellipsis) {
P.Token(x.Pos(), token.ELLIPSIS);
}
func (P *Printer) DoArrayType(x *ast.ArrayType) {
P.Token(x.Pos(), token.LBRACK);
P.Expr(x.Len);
P.Token(nopos, token.RBRACK);
P.Expr(x.Elt);
}
func (P *Printer) DoSliceType(x *ast.SliceType) {
P.Token(x.Pos(), token.LBRACK);
P.Token(nopos, token.RBRACK);
P.Expr(x.Elt);
}
func (P *Printer) DoStructType(x *ast.StructType) {
P.Token(x.Pos(), token.STRUCT);
if x.Fields != nil {
P.Fields(x.Lbrace, x.Fields, x.Rbrace, false);
}
}
func (P *Printer) DoFunctionType(x *ast.FunctionType) {
P.Token(x.Pos(), token.FUNC);
P.Signature(x.Params, x.Results);
}
func (P *Printer) DoInterfaceType(x *ast.InterfaceType) {
P.Token(x.Pos(), token.INTERFACE);
if x.Methods != nil {
P.Fields(x.Lbrace, x.Methods, x.Rbrace, true);
}
}
func (P *Printer) DoMapType(x *ast.MapType) {
P.Token(x.Pos(), token.MAP);
P.separator = blank;
P.Token(nopos, token.LBRACK);
P.Expr(x.Key);
P.Token(nopos, token.RBRACK);
P.Expr(x.Value);
}
func (P *Printer) DoChannelType(x *ast.ChannelType) {
switch x.Dir {
case ast.SEND | ast.RECV:
P.Token(x.Pos(), token.CHAN);
case ast.RECV:
P.Token(x.Pos(), token.ARROW);
P.Token(nopos, token.CHAN);
case ast.SEND:
P.Token(x.Pos(), token.CHAN);
P.separator = blank;
P.Token(nopos, token.ARROW);
}
P.separator = blank;
P.Expr(x.Value);
}
func (P *Printer) Expr1(x ast.Expr, prec1 int) {
if x == nil {
return; // empty expression list
}
saved_prec := P.prec;
P.prec = prec1;
x.Visit(P);
P.prec = saved_prec;
}
func (P *Printer) Expr(x ast.Expr) {
P.Expr1(x, token.LowestPrec);
}
// ----------------------------------------------------------------------------
// Statements
func (P *Printer) Stmt(s ast.Stmt) {
s.Visit(P);
}
func (P *Printer) DoBadStmt(s *ast.BadStmt) {
panic();
}
func (P *Printer) Decl(d ast.Decl);
func (P *Printer) DoDeclStmt(s *ast.DeclStmt) {
P.Decl(s.Decl);
}
func (P *Printer) DoEmptyStmt(s *ast.EmptyStmt) {
P.String(s.Pos(), "");
}
func (P *Printer) DoLabeledStmt(s *ast.LabeledStmt) {
P.indentation--;
P.Expr(s.Label);
P.Token(nopos, token.COLON);
P.indentation++;
// TODO be more clever if s.Stmt is a labeled stat as well
P.separator = tab;
P.Stmt(s.Stmt);
}
func (P *Printer) DoExprStmt(s *ast.ExprStmt) {
P.Expr(s.X);
}
func (P *Printer) DoIncDecStmt(s *ast.IncDecStmt) {
P.Expr(s.X);
P.Token(nopos, s.Tok);
}
func (P *Printer) DoAssignStmt(s *ast.AssignStmt) {
P.Exprs(s.Lhs);
P.separator = blank;
P.Token(s.TokPos, s.Tok);
P.separator = blank;
P.Exprs(s.Rhs);
}
func (P *Printer) DoGoStmt(s *ast.GoStmt) {
P.Token(s.Pos(), token.GO);
P.separator = blank;
P.Expr(s.Call);
}
func (P *Printer) DoDeferStmt(s *ast.DeferStmt) {
P.Token(s.Pos(), token.DEFER);
P.separator = blank;
P.Expr(s.Call);
}
func (P *Printer) DoReturnStmt(s *ast.ReturnStmt) {
P.Token(s.Pos(), token.RETURN);
P.separator = blank;
P.Exprs(s.Results);
}
func (P *Printer) DoBranchStmt(s *ast.BranchStmt) {
P.Token(s.Pos(), s.Tok);
if s.Label != nil {
P.separator = blank;
P.Expr(s.Label);
}
}
func (P *Printer) StatementList(list []ast.Stmt) {
if list != nil {
for i, s := range list {
if i == 0 {
P.newlines = 1;
} else { // i > 0
if !P.opt_semi || *optsemicolons {
// semicolon is required
P.separator = semicolon;
}
}
P.Stmt(s);
P.newlines = 1;
P.state = inside_list;
}
}
}
/*
func (P *Printer) Block(list []ast.Stmt, indent bool) {
P.state = opening_scope;
P.Token(b.Pos_, b.Tok);
if !indent {
P.indentation--;
}
P.StatementList(b.List);
if !indent {
P.indentation++;
}
if !*optsemicolons {
P.separator = none;
}
P.state = closing_scope;
if b.Tok == token.LBRACE {
P.Token(b.Rbrace, token.RBRACE);
P.opt_semi = true;
} else {
P.String(nopos, ""); // process closing_scope state transition!
}
}
*/
func (P *Printer) DoBlockStmt(s *ast.BlockStmt) {
P.state = opening_scope;
P.Token(s.Pos(), token.LBRACE);
P.StatementList(s.List);
if !*optsemicolons {
P.separator = none;
}
P.state = closing_scope;
P.Token(s.Rbrace, token.RBRACE);
P.opt_semi = true;
}
func (P *Printer) ControlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) {
P.separator = blank;
if init == nil && post == nil {
// no semicolons required
if expr != nil {
P.Expr(expr);
}
} else {
// all semicolons required
// (they are not separators, print them explicitly)
if init != nil {
P.Stmt(init);
P.separator = none;
}
P.Token(nopos, token.SEMICOLON);
P.separator = blank;
if expr != nil {
P.Expr(expr);
P.separator = none;
}
if isForStmt {
P.Token(nopos, token.SEMICOLON);
P.separator = blank;
if post != nil {
P.Stmt(post);
}
}
}
P.separator = blank;
}
func (P *Printer) DoIfStmt(s *ast.IfStmt) {
P.Token(s.Pos(), token.IF);
P.ControlClause(false, s.Init, s.Cond, nil);
P.Stmt(s.Body);
if s.Else != nil {
P.separator = blank;
P.Token(nopos, token.ELSE);
P.separator = blank;
P.Stmt(s.Else);
}
}
func (P *Printer) DoCaseClause(s *ast.CaseClause) {
if s.Values != nil {
P.Token(s.Pos(), token.CASE);
P.separator = blank;
P.Exprs(s.Values);
} else {
P.Token(s.Pos(), token.DEFAULT);
}
P.Token(s.Colon, token.COLON);
P.indentation++;
P.StatementList(s.Body);
P.indentation--;
P.newlines = 1;
}
func (P *Printer) DoSwitchStmt(s *ast.SwitchStmt) {
P.Token(s.Pos(), token.SWITCH);
P.ControlClause(false, s.Init, s.Tag, nil);
P.Stmt(s.Body);
}
func (P *Printer) DoTypeCaseClause(s *ast.TypeCaseClause) {
if s.Type != nil {
P.Token(s.Pos(), token.CASE);
P.separator = blank;
P.Expr(s.Type);
} else {
P.Token(s.Pos(), token.DEFAULT);
}
P.Token(s.Colon, token.COLON);
P.indentation++;
P.StatementList(s.Body);
P.indentation--;
P.newlines = 1;
}
func (P *Printer) DoTypeSwitchStmt(s *ast.TypeSwitchStmt) {
P.Token(s.Pos(), token.SWITCH);
P.separator = blank;
if s.Init != nil {
P.Stmt(s.Init);
P.separator = none;
P.Token(nopos, token.SEMICOLON);
}
P.separator = blank;
P.Stmt(s.Assign);
P.separator = blank;
P.Stmt(s.Body);
}
func (P *Printer) DoCommClause(s *ast.CommClause) {
if s.Rhs != nil {
P.Token(s.Pos(), token.CASE);
P.separator = blank;
if s.Lhs != nil {
P.Expr(s.Lhs);
P.separator = blank;
P.Token(nopos, s.Tok);
P.separator = blank;
}
P.Expr(s.Rhs);
} else {
P.Token(s.Pos(), token.DEFAULT);
}
P.Token(s.Colon, token.COLON);
P.indentation++;
P.StatementList(s.Body);
P.indentation--;
P.newlines = 1;
}
func (P *Printer) DoSelectStmt(s *ast.SelectStmt) {
P.Token(s.Pos(), token.SELECT);
P.separator = blank;
P.Stmt(s.Body);
}
func (P *Printer) DoForStmt(s *ast.ForStmt) {
P.Token(s.Pos(), token.FOR);
P.ControlClause(true, s.Init, s.Cond, s.Post);
P.Stmt(s.Body);
}
func (P *Printer) DoRangeStmt(s *ast.RangeStmt) {
P.Token(s.Pos(), token.FOR);
P.separator = blank;
P.Expr(s.Key);
if s.Value != nil {
P.Token(nopos, token.COMMA);
P.separator = blank;
P.state = inside_list;
P.Expr(s.Value);
}
P.separator = blank;
P.Token(s.TokPos, s.Tok);
P.separator = blank;
P.Token(nopos, token.RANGE);
P.separator = blank;
P.Expr(s.X);
P.separator = blank;
P.Stmt(s.Body);
}
// ----------------------------------------------------------------------------
// Declarations
func (P *Printer) DoBadDecl(d *ast.BadDecl) {
P.String(d.Pos(), "<BAD DECL>");
}
func (P *Printer) DoImportDecl(d *ast.ImportDecl) {
if d.Pos().Offset > 0 {
P.Token(d.Pos(), token.IMPORT);
P.separator = blank;
}
if d.Name != nil {
P.Expr(d.Name);
} else {
P.String(d.Path[0].Pos(), ""); // flush pending ';' separator/newlines
}
P.separator = tab;
// TODO fix for longer package names
if len(d.Path) > 1 {
panic();
}
P.HtmlPackageName(d.Path[0].Pos(), string(d.Path[0].Lit));
P.newlines = 2;
}
func (P *Printer) DoConstDecl(d *ast.ConstDecl) {
if d.Pos().Offset > 0 {
P.Token(d.Pos(), token.CONST);
P.separator = blank;
}
P.Idents(d.Names, P.full);
if d.Type != nil {
P.separator = blank; // TODO switch to tab? (indentation problem with structs)
P.Expr(d.Type);
}
if d.Values != nil {
P.separator = tab;
P.Token(nopos, token.ASSIGN);
P.separator = blank;
P.Exprs(d.Values);
}
P.newlines = 2;
}
func (P *Printer) DoTypeDecl(d *ast.TypeDecl) {
if d.Pos().Offset > 0 {
P.Token(d.Pos(), token.TYPE);
P.separator = blank;
}
P.Expr(d.Name);
P.separator = blank; // TODO switch to tab? (but indentation problem with structs)
P.Expr(d.Type);
P.newlines = 2;
}
func (P *Printer) DoVarDecl(d *ast.VarDecl) {
if d.Pos().Offset > 0 {
P.Token(d.Pos(), token.VAR);
P.separator = blank;
}
P.Idents(d.Names, P.full);
if d.Type != nil {
P.separator = blank; // TODO switch to tab? (indentation problem with structs)
P.Expr(d.Type);
//P.separator = P.Type(d.Type);
}
if d.Values != nil {
P.separator = tab;
P.Token(nopos, token.ASSIGN);
P.separator = blank;
P.Exprs(d.Values);
}
P.newlines = 2;
}
func (P *Printer) DoFuncDecl(d *ast.FuncDecl) {
P.Token(d.Pos(), token.FUNC);
P.separator = blank;
if recv := d.Recv; recv != nil {
// method: print receiver
P.Token(nopos, token.LPAREN);
if len(recv.Names) > 0 {
P.Expr(recv.Names[0]);
P.separator = blank;
}
P.Expr(recv.Type);
P.Token(nopos, token.RPAREN);
P.separator = blank;
}
P.Expr(d.Name);
P.Signature(d.Type.Params, d.Type.Results);
if P.full && d.Body != nil {
P.separator = blank;
P.Stmt(d.Body);
}
P.newlines = 3;
}
func (P *Printer) DoDeclList(d *ast.DeclList) {
P.Token(d.Pos(), d.Tok);
P.separator = blank;
// group of parenthesized declarations
P.state = opening_scope;
P.Token(nopos, token.LPAREN);
if len(d.List) > 0 {
P.newlines = 1;
for i := 0; i < len(d.List); i++ {
if i > 0 {
P.separator = semicolon;
}
P.Decl(d.List[i]);
P.newlines = 1;
}
}
P.state = closing_scope;
P.Token(d.Rparen, token.RPAREN);
P.opt_semi = true;
P.newlines = 2;
}
func (P *Printer) Decl(d ast.Decl) {
d.Visit(P);
}
// ----------------------------------------------------------------------------
// Package interface
func stripWhiteSpace(s []byte) []byte {
i, j := 0, len(s);
for i < len(s) && s[i] <= ' ' {
i++;
}
for j > i && s[j-1] <= ' ' {
j--
}
return s[i : j];
}
func cleanComment(s []byte) []byte {
switch s[1] {
case '/': s = s[2 : len(s)-1];
case '*': s = s[2 : len(s)-2];
default : panic("illegal comment");
}
return stripWhiteSpace(s);
}
func (P *Printer) printComment(comment ast.Comments) {
in_paragraph := false;
for i, c := range comment {
s := cleanComment(c.Text);
if len(s) > 0 {
if !in_paragraph {
P.Printf("<p>\n");
in_paragraph = true;
}
P.Printf("%s\n", P.htmlEscape(untabify(string(s))));
} else {
if in_paragraph {
P.Printf("</p>\n");
in_paragraph = false;
}
}
}
if in_paragraph {
P.Printf("</p>\n");
}
}
func (P *Printer) Interface(p *ast.Package) {
P.full = false;
for i := 0; i < len(p.Decls); i++ {
switch d := p.Decls[i].(type) {
case *ast.ConstDecl:
if hasExportedNames(d.Names) {
P.Printf("<h2>Constants</h2>\n");
P.Printf("<p><pre>");
P.DoConstDecl(d);
P.String(nopos, "");
P.Printf("</pre></p>\n");
if d.Doc != nil {
P.printComment(d.Doc);
}
}
case *ast.TypeDecl:
if isExported(d.Name) {
P.Printf("<h2>type %s</h2>\n", d.Name.Lit);
P.Printf("<p><pre>");
P.DoTypeDecl(d);
P.String(nopos, "");
P.Printf("</pre></p>\n");
if d.Doc != nil {
P.printComment(d.Doc);
}
}
case *ast.VarDecl:
if hasExportedNames(d.Names) {
P.Printf("<h2>Variables</h2>\n");
P.Printf("<p><pre>");
P.DoVarDecl(d);
P.String(nopos, "");
P.Printf("</pre></p>\n");
if d.Doc != nil {
P.printComment(d.Doc);
}
}
case *ast.FuncDecl:
if isExported(d.Name) {
if d.Recv != nil {
P.Printf("<h3>func (");
P.Expr(d.Recv.Type);
P.Printf(") %s</h3>\n", d.Name.Lit);
} else {
P.Printf("<h2>func %s</h2>\n", d.Name.Lit);
}
P.Printf("<p><code>");
P.DoFuncDecl(d);
P.String(nopos, "");
P.Printf("</code></p>\n");
if d.Doc != nil {
P.printComment(d.Doc);
}
}
case *ast.DeclList:
}
}
}
// ----------------------------------------------------------------------------
// Program
func (P *Printer) Program(p *ast.Package) {
P.full = true;
P.Token(p.Pos(), token.PACKAGE);
P.separator = blank;
P.Expr(p.Name);
P.newlines = 1;
for i := 0; i < len(p.Decls); i++ {
P.Decl(p.Decls[i]);
}
P.newlines = 1;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package docPrinter
import (
"vector";
"utf8";
"unicode";
"io";
"fmt";
"ast";
"astprinter";
"template";
)
// ----------------------------------------------------------------------------
// Elementary support
// TODO this should be an AST method
func isExported(name *ast.Ident) bool {
ch, len := utf8.DecodeRune(name.Lit);
return unicode.IsUpper(ch);
}
func hasExportedNames(names []*ast.Ident) bool {
for i, name := range names {
if isExported(name) {
return true;
}
}
return false;
}
// ----------------------------------------------------------------------------
type constDoc struct {
cast *ast.ConstDecl;
}
type varDoc struct {
vast *ast.VarDecl;
}
type funcDoc struct {
fast *ast.FuncDecl;
}
type typeDoc struct {
tast *ast.TypeDecl;
methods map[string] *funcDoc;
}
type PackageDoc struct {
name string; // package name
imports map[string] string;
consts map[string] *constDoc;
types map[string] *typeDoc;
vars map[string] *varDoc;
funcs map[string] *funcDoc;
}
// PackageDoc initializes a document to collect package documentation.
// The package name is provided as initial argument. Use AddPackage to
// add the AST for each source file belonging to the same package.
//
func (P *PackageDoc) Init(name string) {
P.name = name;
P.imports = make(map[string] string);
P.consts = make(map[string] *constDoc);
P.types = make(map[string] *typeDoc);
P.vars = make(map[string] *varDoc);
P.funcs = make(map[string] *funcDoc);
}
func (P *PackageDoc) addDecl(decl ast.Decl) {
switch d := decl.(type) {
case *ast.ImportDecl:
case *ast.ConstDecl:
if hasExportedNames(d.Names) {
}
case *ast.TypeDecl:
if isExported(d.Name) {
}
case *ast.VarDecl:
if hasExportedNames(d.Names) {
}
case *ast.FuncDecl:
if isExported(d.Name) {
if d.Recv != nil {
// method
} else {
// ordinary function
}
}
case *ast.DeclList:
for i, decl := range d.List {
P.addDecl(decl);
}
}
}
// AddPackage adds the AST of a source file belonging to the same
// package. The package names must match. If the package was added
// before, AddPackage is a no-op.
//
func (P *PackageDoc) AddPackage(pak *ast.Package) {
if P.name != string(pak.Name.Lit) {
panic("package names don't match");
}
// add all declarations
for i, decl := range pak.Decls {
P.addDecl(decl);
}
}
func (P *PackageDoc) printConsts(p *astPrinter.Printer) {
}
func (P *PackageDoc) printTypes(p *astPrinter.Printer) {
}
func (P *PackageDoc) printVars(p *astPrinter.Printer) {
}
func (P *PackageDoc) printFuncs(p *astPrinter.Printer) {
}
func (P *PackageDoc) printPackage(p *astPrinter.Printer) {
}
// TODO make this a parameter for Init or Print?
var templ = template.NewTemplateOrDie("template.html");
func (P *PackageDoc) Print(writer io.Write) {
var astp astPrinter.Printer;
astp.Init(writer, nil, true);
err := templ.Apply(writer, "<!--", template.Substitution {
"PACKAGE_NAME-->" : func() { fmt.Fprint(writer, P.name); },
"PACKAGE_COMMENT-->": func() { },
"PACKAGE_INTERFACE-->" : func() { },
"PACKAGE_BODY-->" : func() { },
});
if err != nil {
panic("print error - exiting");
}
}
......@@ -22,6 +22,8 @@ import (
"platform";
"compilation";
"printer";
"tabwriter";
"docprinter";
)
......@@ -29,6 +31,11 @@ var (
verbose = flag.Bool("v", false, "verbose mode");
port = flag.String("port", "6060", "server port");
root = flag.String("root", Platform.GOROOT, "go root directory");
// layout control
tabwidth = flag.Int("gds_tabwidth", 4, "tab width");
usetabs = flag.Bool("gds_usetabs", false, "align with tabs instead of blanks");
newdoc = flag.Bool("newdoc", false, "use new document printing"); // TODO remove once this works
)
......@@ -159,7 +166,31 @@ func serveFile(c *http.Conn, filename string) {
}
c.SetHeader("content-type", "text/html; charset=utf-8");
if *newdoc {
// initialize tabwriter for nicely aligned output
padchar := byte(' ');
if *usetabs {
padchar = '\t';
}
writer := tabwriter.NewWriter(c, *tabwidth, 1, padchar, tabwriter.FilterHTML);
// write documentation
var doc docPrinter.PackageDoc;
doc.Init(string(prog.Name.Lit));
doc.AddPackage(prog);
doc.Print(writer);
// flush any pending output
err := writer.Flush();
if err != nil {
panic("print error - exiting");
}
} else {
// TODO remove once the new document stuff works better
// than the old code
Printer.Print(c, prog, true);
}
}
......
......@@ -1045,85 +1045,101 @@ func (p *parser) parseCompositeLit(typ ast.Expr) ast.Expr {
}
// TODO apply these make functions more thoroughly
// (all uses of parseExpression; also should call
// them something better - verifyX?)
// TODO Consider different approach to checking syntax after parsing:
// Provide a arguments (set of flags) to parsing functions
// restricting what they are syupposed to accept depending
// on context.
// makeExpr makes sure x is an expression and not a type.
func (p *parser) makeExpr(x ast.Expr) ast.Expr {
// checkExpr checks that x is an expression (and not a type).
func (p *parser) checkExpr(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr: return x;
case *ast.Ident: return x;
case *ast.IntLit: return x;
case *ast.FloatLit: return x;
case *ast.CharLit: return x;
case *ast.StringLit: return x;
case *ast.StringList: return x;
case *ast.FunctionLit: return x;
case *ast.CompositeLit: return x;
case *ast.ParenExpr: p.makeExpr(t.X); return x;
case *ast.SelectorExpr: return x;
case *ast.IndexExpr: return x;
case *ast.SliceExpr: return x;
case *ast.TypeAssertExpr: return x;
case *ast.CallExpr: return x;
case *ast.StarExpr: return x;
case *ast.UnaryExpr: return x;
case *ast.BinaryExpr: return x;
case *ast.BadExpr:
case *ast.Ident:
case *ast.IntLit:
case *ast.FloatLit:
case *ast.CharLit:
case *ast.StringLit:
case *ast.StringList:
case *ast.FunctionLit:
case *ast.CompositeLit:
case *ast.ParenExpr:
case *ast.SelectorExpr:
case *ast.IndexExpr:
case *ast.SliceExpr:
case *ast.TypeAssertExpr:
case *ast.CallExpr:
case *ast.StarExpr:
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.error_expected(x.Pos(), "expression");
x = &ast.BadExpr{x.Pos()};
}
case *ast.BinaryExpr:
default:
// all other nodes are not proper expressions
p.error_expected(x.Pos(), "expression");
return &ast.BadExpr{x.Pos()};
x = &ast.BadExpr{x.Pos()};
}
return x;
}
// makeTypeName makes sure that x is type name.
func (p *parser) makeTypeName(x ast.Expr) ast.Expr {
// checkTypeName checks that x is type name.
func (p *parser) checkTypeName(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr: return x;
case *ast.Ident: return x;
case *ast.ParenExpr: p.makeTypeName(t.X); return x; // TODO should (TypeName) be illegal?
case *ast.SelectorExpr: p.makeTypeName(t.X); return x;
}
case *ast.BadExpr:
case *ast.Ident:
case *ast.ParenExpr: p.checkTypeName(t.X); // TODO should (TypeName) be illegal?
case *ast.SelectorExpr: p.checkTypeName(t.X);
default:
// all other nodes are not type names
p.error_expected(x.Pos(), "type name");
return &ast.BadExpr{x.Pos()};
x = &ast.BadExpr{x.Pos()};
}
return x;
}
// makeCompositeLitType makes sure x is a legal composite literal type.
func (p *parser) makeCompositeLitType(x ast.Expr) ast.Expr {
// checkCompositeLitType checks that x is a legal composite literal type.
func (p *parser) checkCompositeLitType(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr: return x;
case *ast.Ident: return x;
case *ast.ParenExpr: p.makeCompositeLitType(t.X); return x;
case *ast.SelectorExpr: p.makeTypeName(t.X); return x;
case *ast.ParenExpr: p.checkCompositeLitType(t.X);
case *ast.SelectorExpr: p.checkTypeName(t.X);
case *ast.ArrayType: return x;
case *ast.SliceType: return x;
case *ast.StructType: return x;
case *ast.MapType: return x;
}
default:
// all other nodes are not legal composite literal types
p.error_expected(x.Pos(), "composite literal type");
return &ast.BadExpr{x.Pos()};
x = &ast.BadExpr{x.Pos()};
}
return x;
}
// makeExprOrType makes sure that x is an expression or a type
// checkExprOrType checks that x is an expression or a type
// (and not a raw type such as [...]T).
//
func (p *parser) makeExprOrType(x ast.Expr) ast.Expr {
func (p *parser) checkExprOrType(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
if t, is_array := x.(*ast.ArrayType); is_array {
switch t := x.(type) {
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.error_expected(x.Pos(), "expression");
x = &ast.BadExpr{x.Pos()};
}
case *ast.ArrayType:
if len, is_ellipsis := t.Len.(*ast.Ellipsis); is_ellipsis {
p.error(len.Pos(), "expected array length, found '...'");
return &ast.BadExpr{x.Pos()};
x = &ast.BadExpr{x.Pos()};
}
}
......@@ -1140,17 +1156,17 @@ func (p *parser) parsePrimaryExpr() ast.Expr {
x := p.parseOperand();
for {
switch p.tok {
case token.PERIOD: x = p.parseSelectorOrTypeAssertion(p.makeExpr(x));
case token.LBRACK: x = p.parseIndexOrSlice(p.makeExpr(x));
case token.LPAREN: x = p.parseCallOrConversion(p.makeExprOrType(x));
case token.PERIOD: x = p.parseSelectorOrTypeAssertion(p.checkExpr(x));
case token.LBRACK: x = p.parseIndexOrSlice(p.checkExpr(x));
case token.LPAREN: x = p.parseCallOrConversion(p.checkExprOrType(x));
case token.LBRACE:
if p.expr_lev >= 0 {
x = p.parseCompositeLit(p.makeCompositeLitType(x));
x = p.parseCompositeLit(p.checkCompositeLitType(x));
} else {
return p.makeExprOrType(x);
return p.checkExprOrType(x);
}
default:
return p.makeExprOrType(x);
return p.checkExprOrType(x);
}
}
......@@ -1169,14 +1185,14 @@ func (p *parser) parseUnaryExpr() ast.Expr {
pos, op := p.pos, p.tok;
p.next();
x := p.parseUnaryExpr();
return &ast.UnaryExpr{pos, op, p.makeExpr(x)};
return &ast.UnaryExpr{pos, op, p.checkExpr(x)};
case token.MUL:
// unary "*" expression or pointer type
pos := p.pos;
p.next();
x := p.parseUnaryExpr();
return &ast.StarExpr{pos, p.makeExprOrType(x)};
return &ast.StarExpr{pos, p.checkExprOrType(x)};
}
return p.parsePrimaryExpr();
......@@ -1194,7 +1210,7 @@ func (p *parser) parseBinaryExpr(prec1 int) ast.Expr {
pos, op := p.pos, p.tok;
p.next();
y := p.parseBinaryExpr(prec + 1);
x = &ast.BinaryExpr{p.makeExpr(x), pos, op, p.makeExpr(y)};
x = &ast.BinaryExpr{p.checkExpr(x), pos, op, p.checkExpr(y)};
}
}
......@@ -1215,7 +1231,7 @@ func (p *parser) parseExpression() ast.Expr {
// Statements
func (p *parser) parseSimpleStmt() ast.Stmt {
func (p *parser) parseSimpleStmt(label_ok bool) ast.Stmt {
if p.trace {
defer un(trace(p, "SimpleStmt"));
}
......@@ -1225,8 +1241,8 @@ func (p *parser) parseSimpleStmt() ast.Stmt {
switch p.tok {
case token.COLON:
// labeled statement
p.expect(token.COLON);
if len(x) == 1 {
p.next();
if label_ok && len(x) == 1 {
if label, is_ident := x[0].(*ast.Ident); is_ident {
return &ast.LabeledStmt{label, p.parseStatement()};
}
......@@ -1344,12 +1360,12 @@ func (p *parser) isExpr(s ast.Stmt) bool {
}
func (p *parser) asExpr(s ast.Stmt) ast.Expr {
func (p *parser) makeExpr(s ast.Stmt) ast.Expr {
if s == nil {
return nil;
}
if es, is_expr := s.(*ast.ExprStmt); is_expr {
return es.X;
return p.checkExpr(es.X);
}
p.error(s.Pos(), "expected condition, found simple statement");
return &ast.BadExpr{s.Pos()};
......@@ -1362,18 +1378,18 @@ func (p *parser) parseControlClause(isForStmt bool) (s1, s2, s3 ast.Stmt) {
p.expr_lev = -1;
if p.tok != token.SEMICOLON {
s1 = p.parseSimpleStmt();
s1 = p.parseSimpleStmt(false);
}
if p.tok == token.SEMICOLON {
p.next();
if p.tok != token.LBRACE && p.tok != token.SEMICOLON {
s2 = p.parseSimpleStmt();
s2 = p.parseSimpleStmt(false);
}
if isForStmt {
// for statements have a 3rd section
p.expect(token.SEMICOLON);
if p.tok != token.LBRACE {
s3 = p.parseSimpleStmt();
s3 = p.parseSimpleStmt(false);
}
}
} else {
......@@ -1401,7 +1417,7 @@ func (p *parser) parseIfStmt() *ast.IfStmt {
else_ = p.parseStatement();
}
return &ast.IfStmt{pos, s1, p.asExpr(s2), body, else_};
return &ast.IfStmt{pos, s1, p.makeExpr(s2), body, else_};
}
......@@ -1467,7 +1483,7 @@ func (p *parser) parseSwitchStmt() ast.Stmt {
rbrace := p.expect(token.RBRACE);
p.opt_semi = true;
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace};
return &ast.SwitchStmt{pos, s1, p.asExpr(s2), body};
return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body};
}
// type switch
......@@ -1585,7 +1601,7 @@ func (p *parser) parseForStmt() ast.Stmt {
}
} else {
// regular for statement
return &ast.ForStmt{pos, s1, p.asExpr(s2), s3, body};
return &ast.ForStmt{pos, s1, p.makeExpr(s2), s3, body};
}
panic(); // unreachable
......@@ -1606,7 +1622,7 @@ func (p *parser) parseStatement() ast.Stmt {
token.IDENT, token.INT, token.FLOAT, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operand
token.LBRACK, token.STRUCT, // composite type
token.MUL, token.AND, token.ARROW: // unary operators
return p.parseSimpleStmt();
return p.parseSimpleStmt(true);
case token.GO:
return p.parseGoStmt();
case token.DEFER:
......@@ -1778,7 +1794,7 @@ func (p *parser) parseReceiver() *ast.Field {
if ptr, is_ptr := base.(*ast.StarExpr); is_ptr {
base = ptr.X;
}
p.makeTypeName(base);
p.checkTypeName(base);
return recv;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment