Commit afad8272 authored by Robert Griesemer's avatar Robert Griesemer

- div and mod (arbitrary precision)

- more tests
- some global renames

R=r
OCL=18219
CL=18219
parent 12a34358
......@@ -20,41 +20,41 @@ package Bignum
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
//
// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n,
// with the digits x[i] as the array elements. 0 is represented as an
// empty array (length == 0).
// with the digits x[i] as the array elements.
//
// A natural number is normalized if the array contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur which are
// always normalized before returning the final result.
// always normalized before returning the final result. The normalized
// representation of 0 is the empty array (length = 0).
//
// The base B is chosen as large as possible on a given platform but there
// are a few constraints besides the largest unsigned integer type available.
// are a few constraints besides the size of the largest unsigned integer
// type available.
// TODO describe the constraints.
type Word uint64;
const LogW = 64;
const LogH = 4; // bits for a hex digit (= "small" number)
const H = 1 << LogH;
const LogB = LogW - LogH;
const L = LogB;
const B = 1 << LogB;
const M = B - 1;
// For division
const (
L3 = L / 3;
L3 = LogB / 3;
B3 = 1 << L3;
M3 = B3 - 1;
L2 = L3 * 2;
B2 = 1 << L2;
M2 = B2 - 1;
L = L3 * 3;
B = 1 << L;
M = B - 1;
)
type (
Word3 uint32;
Natural3 [] Word3;
Digit3 uint32;
Digit uint64;
)
......@@ -69,17 +69,26 @@ func assert(p bool) {
}
func IsSmall(x Word) bool {
return x < H;
func IsSmall(x Digit) bool {
return x < 1<<LogH;
}
func Split(x Word) (Word, Word) {
func Split(x Digit) (Digit, Digit) {
return x>>L, x&M;
}
export func Dump(x *[]Word) {
export func Dump(x *[]Digit) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]);
}
println();
}
export func Dump3(x *[]Digit3) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]);
......@@ -91,11 +100,11 @@ export func Dump(x *[]Word) {
// ----------------------------------------------------------------------------
// Natural numbers
export type Natural []Word;
export type Natural []Digit;
export var NatZero *Natural = new(Natural, 0);
export func NewNat(x Word) *Natural {
export func Nat(x Digit) *Natural {
var z *Natural;
switch {
case x == 0:
......@@ -122,7 +131,7 @@ func Normalize(x *Natural) *Natural {
}
func Normalize3(x *Natural3) *Natural3 {
func Normalize3(x *[]Digit3) *[]Digit3 {
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
......@@ -146,7 +155,7 @@ func (x *Natural) Add(y *Natural) *Natural {
assert(n >= m);
z := new(Natural, n + 1);
c := Word(0);
c := Digit(0);
for i := 0; i < m; i++ { c, z[i] = Split(x[i] + y[i] + c); }
for i := m; i < n; i++ { c, z[i] = Split(x[i] + c); }
z[n] = c;
......@@ -161,8 +170,8 @@ func (x *Natural) Sub(y *Natural) *Natural {
assert(n >= m);
z := new(Natural, n);
c := Word(0);
for i := 0; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); }
c := Digit(0);
for i := 0; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); } // TODO verify asr!!!
for i := m; i < n; i++ { c, z[i] = Split(x[i] + c); }
assert(c == 0); // x.Sub(y) must be called with x >= y
......@@ -171,7 +180,7 @@ func (x *Natural) Sub(y *Natural) *Natural {
// Computes x = x*a + c (in place) for "small" a's.
func (x* Natural) MulAdd1(a, c Word) *Natural {
func (x* Natural) MulAdd1(a, c Digit) *Natural {
assert(IsSmall(a-1) && IsSmall(c));
n := len(x);
z := new(Natural, n + 1);
......@@ -184,7 +193,7 @@ func (x* Natural) MulAdd1(a, c Word) *Natural {
// Returns c = x*y div B, z = x*y mod B.
func Mul1(x, y Word) (Word, Word) {
func Mul1(x, y Digit) (Digit, Digit) {
// Split x and y into 2 sub-digits each (in base sqrt(B)),
// multiply the digits separately while avoiding overflow,
// and return the product as two separate digits.
......@@ -223,7 +232,7 @@ func (x *Natural) Mul(y *Natural) *Natural {
for j := 0; j < m; j++ {
d := y[j];
if d != 0 {
c := Word(0);
c := Digit(0);
for i := 0; i < n; i++ {
// z[i+j] += x[i]*d + c;
z1, z0 := Mul1(x[i], d);
......@@ -238,13 +247,13 @@ func (x *Natural) Mul(y *Natural) *Natural {
}
func Shl1(x, c Word, s uint) (Word, Word) {
func Shl1(x, c Digit, s uint) (Digit, Digit) {
assert(s <= LogB);
return x >> (LogB - s), x << s & M | c
}
func Shr1(x, c Word, s uint) (Word, Word) {
func Shr1(x, c Digit, s uint) (Digit, Digit) {
assert(s <= LogB);
return x << (LogB - s) & M, x >> s | c
}
......@@ -256,7 +265,7 @@ func (x *Natural) Shl(s uint) *Natural {
s = s % LogB;
z := new(Natural, n + si + 1);
c := Word(0);
c := Digit(0);
for i := 0; i < n; i++ { c, z[i+si] = Shl1(x[i], c, s); }
z[n+si] = c;
......@@ -272,83 +281,184 @@ func (x *Natural) Shr(s uint) *Natural {
assert(si <= n);
z := new(Natural, n - si);
c := Word(0);
c := Digit(0);
for i := n - 1; i >= si; i-- { c, z[i-si] = Shr1(x[i], c, s); }
return Normalize(z);
}
func SplitBase(x *Natural) *Natural3 {
xl := len(x);
z := new(Natural3, xl * 3);
for i, j := 0, 0; i < xl; i, j = i + 1, j + 3 {
// DivMod needs multi-precision division which is not available if Digit
// is already using the largest uint size. Split base before division,
// and merge again after. Each Digit is split into 3 Digit3's.
func SplitBase(x *Natural) *[]Digit3 {
// TODO Use Log() for better result - don't need Normalize3 at the end!
n := len(x);
z := new([]Digit3, n*3 + 1); // add space for extra digit (used by DivMod)
for i, j := 0, 0; i < n; i, j = i+1, j+3 {
t := x[i];
z[j] = Word3(t & M3); t >>= L3; j++;
z[j] = Word3(t & M3); t >>= L3; j++;
z[j] = Word3(t & M3); t >>= L3; j++;
z[j+0] = Digit3(t >> (L3*0) & M3);
z[j+1] = Digit3(t >> (L3*1) & M3);
z[j+2] = Digit3(t >> (L3*2) & M3);
}
return Normalize3(z);
}
func Scale(x *Natural, f Word) *Natural3 {
return nil;
func MergeBase(x *[]Digit3) *Natural {
i := len(x);
j := (i+2)/3;
z := new(Natural, j);
switch i%3 {
case 1: z[j-1] = Digit(x[i-1]); i--; j--;
case 2: z[j-1] = Digit(x[i-1])<<L3 | Digit(x[i-2]); i -= 2; j--;
case 0:
}
for i >= 3 {
z[j-1] = ((Digit(x[i-1])<<L3) | Digit(x[i-2]))<<L3 | Digit(x[i-3]);
i -= 3;
j--;
}
assert(j == 0);
return Normalize(z);
}
func TrialDigit(r, d *Natural3, k, m int) Word {
km := k + m;
assert(2 <= m && m <= km);
r3 := (Word(r[km]) << L3 + Word(r[km - 1])) << L3 + Word(r[km - 2]);
d2 := Word(d[m - 1]) << L3 + Word(d[m - 2]);
qt := r3 / d2;
if qt >= B {
qt = B - 1;
func Split3(x Digit) (Digit, Digit3) {
return uint64(int64(x)>>L3), Digit3(x&M3)
}
func Product(x *[]Digit3, y Digit) {
n := len(x);
c := Digit(0);
for i := 0; i < n; i++ { c, x[i] = Split3(Digit(x[i])*y + c) }
assert(c == 0);
}
func Quotient(x *[]Digit3, y Digit) {
n := len(x);
c := Digit(0);
for i := n-1; i >= 0; i-- {
t := c*B3 + Digit(x[i]);
c, x[i] = t%y, Digit3(t/y);
}
return qt;
assert(c == 0);
}
func DivMod(x, y *Natural) {
xl := len(x);
yl := len(y);
assert(2 <= yl && yl <= xl); // use special-case algorithm otherwise
// Division and modulo computation - destroys x and y. Based on the
// algorithms described in:
//
// 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical
// Algorithms." Addison-Wesley, Reading, 1969.
//
// 2) P. Brinch Hansen, Multiple-length division revisited: A tour of the
// minefield. "Software - Practice and Experience 24", (June 1994),
// 579-601. John Wiley & Sons, Ltd.
//
// Specifically, the inplace computation of quotient and remainder
// is described in 1), while 2) provides the background for a more
// accurate initial guess of the trial digit.
f := B / (y[yl - 1] + 1);
r := Scale(x, f);
d := Scale(y, f);
n := len(r);
m := len(d);
func DivMod(x, y *[]Digit3) (*[]Digit3, *[]Digit3) {
const b = B3;
for k := n - m; k >= 0; k-- {
qt := TrialDigit(r, d, k, m);
n := len(x);
m := len(y);
assert(m > 0); // division by zero
assert(n+1 <= cap(x)); // space for one extra digit (should it be == ?)
x = x[0 : n + 1];
if m == 1 {
// division by single digit
d := Digit(y[0]);
c := Digit(0);
for i := n; i > 0; i-- {
t := c*b + Digit(x[i-1]);
c, x[i] = t%d, Digit3(t/d);
}
x[0] = Digit3(c);
} else if m > n {
// quotient = 0, remainder = x
// TODO in this case we shouldn't even split base - FIX THIS
m = n;
} else {
// general case
assert(2 <= m && m <= n);
assert(x[n] == 0);
// normalize x and y
f := b/(Digit(y[m-1]) + 1);
Product(x, f);
Product(y, f);
assert(b/2 <= y[m-1] && y[m-1] < b); // incorrect scaling
d2 := Digit(y[m-1])*b + Digit(y[m-2]);
for i := n-m; i >= 0; i-- {
k := i+m;
// compute trial digit
r3 := (Digit(x[k])*b + Digit(x[k-1]))*b + Digit(x[k-2]);
q := r3/d2;
if q >= b { q = b-1 }
// subtract y*q
c := Digit(0);
for j := 0; j < m; j++ {
c, x[i+j] = Split3(c + Digit(x[i+j]) - Digit(y[j])*q);
}
// correct if trial digit was too large
if c + Digit(x[k]) != 0 {
// add y
c := Digit(0);
for j := 0; j < m; j++ {
c, x[i+j] = Split3(c + Digit(x[i+j]) + Digit(y[j]));
}
// correct trial digit
q--;
}
x[k] = Digit3(q);
}
// undo normalization for remainder
Quotient(x[0 : m], f);
}
return x[m : n+1], x[0 : m];
}
func (x *Natural) Div(y *Natural) *Natural {
panic("UNIMPLEMENTED");
return nil;
q, r := DivMod(SplitBase(x), SplitBase(y));
return MergeBase(q);
}
func (x *Natural) Mod(y *Natural) *Natural {
panic("UNIMPLEMENTED");
return nil;
q, r := DivMod(SplitBase(x), SplitBase(y));
return MergeBase(r);
}
func (x *Natural) Cmp(y *Natural) int {
xl := len(x);
yl := len(y);
n := len(x);
m := len(y);
if xl != yl || xl == 0 {
return xl - yl;
if n != m || n == 0 {
return n - m;
}
i := xl - 1;
i := n - 1;
for i > 0 && x[i] == y[i] { i--; }
d := 0;
......@@ -361,7 +471,7 @@ func (x *Natural) Cmp(y *Natural) int {
}
func Log1(x Word) int {
func Log1(x Digit) int {
n := -1;
for x != 0 { x >>= 1; n++; }
return n;
......@@ -437,10 +547,10 @@ func Copy(x *Natural) *Natural {
// Computes x = x div d (in place - the recv maybe modified) for "small" d's.
// Returns updated x and x mod d.
func (x *Natural) DivMod1(d Word) (*Natural, Word) {
func (x *Natural) DivMod1(d Digit) (*Natural, Digit) {
assert(0 < d && IsSmall(d - 1));
c := Word(0);
c := Digit(0);
for i := len(x) - 1; i >= 0; i-- {
c = c<<L + x[i];
x[i] = c/d;
......@@ -451,7 +561,7 @@ func (x *Natural) DivMod1(d Word) (*Natural, Word) {
}
func (x *Natural) String(base Word) string {
func (x *Natural) String(base Digit) string {
if x.IsZero() {
return "0";
}
......@@ -469,7 +579,7 @@ func (x *Natural) String(base Word) string {
x = Copy(x); // don't destroy recv
for !x.IsZero() {
i--;
var d Word;
var d Digit;
x, d = x.DivMod1(base);
s[i] = hex[d];
};
......@@ -478,11 +588,11 @@ func (x *Natural) String(base Word) string {
}
func MulRange(a, b Word) *Natural {
export func MulRange(a, b Digit) *Natural {
switch {
case a > b: return NewNat(1);
case a == b: return NewNat(a);
case a + 1 == b: return NewNat(a).Mul(NewNat(b));
case a > b: return Nat(1);
case a == b: return Nat(a);
case a + 1 == b: return Nat(a).Mul(Nat(b));
}
m := (a + b)>>1;
assert(a <= m && m < b);
......@@ -490,26 +600,26 @@ func MulRange(a, b Word) *Natural {
}
export func Fact(n Word) *Natural {
export func Fact(n Digit) *Natural {
// Using MulRange() instead of the basic for-loop
// lead to faster factorial computation.
return MulRange(2, n);
}
func HexValue(ch byte) Word {
d := Word(H);
func HexValue(ch byte) Digit {
d := Digit(1 << LogH);
switch {
case '0' <= ch && ch <= '9': d = Word(ch - '0');
case 'a' <= ch && ch <= 'f': d = Word(ch - 'a') + 10;
case 'A' <= ch && ch <= 'F': d = Word(ch - 'A') + 10;
case '0' <= ch && ch <= '9': d = Digit(ch - '0');
case 'a' <= ch && ch <= 'f': d = Digit(ch - 'a') + 10;
case 'A' <= ch && ch <= 'F': d = Digit(ch - 'A') + 10;
}
return d;
}
// TODO auto-detect base if base argument is 0
export func NatFromString(s string, base Word) *Natural {
export func NatFromString(s string, base Digit) *Natural {
x := NatZero;
for i := 0; i < len(s); i++ {
d := HexValue(s[i]);
......@@ -532,6 +642,11 @@ export type Integer struct {
}
export func Int(x int64) *Integer {
return nil;
}
func (x *Integer) Add(y *Integer) *Integer {
var z *Integer;
if x.sign == y.sign {
......@@ -603,7 +718,7 @@ func (x *Integer) Cmp(y *Integer) int {
}
func (x *Integer) String(base Word) string {
func (x *Integer) String(base Digit) string {
if x.mant.IsZero() {
return "0";
}
......@@ -615,7 +730,7 @@ func (x *Integer) String(base Word) string {
}
export func IntFromString(s string, base Word) *Integer {
export func IntFromString(s string, base Digit) *Integer {
// get sign, if any
sign := false;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
......
......@@ -4,7 +4,7 @@
package main
import Bignum "bignum"
import Big "bignum"
const (
sa = "991";
......@@ -14,25 +14,35 @@ const (
var (
a = Bignum.NatFromString(sa, 10);
b = Bignum.NatFromString(sb, 10);
c = Bignum.NatFromString(sc, 10);
a = Big.NatFromString(sa, 10);
b = Big.NatFromString(sb, 10);
c = Big.NatFromString(sc, 10);
)
var test_msg string;
func TEST(n int, b bool) {
func TEST(n uint, b bool) {
if !b {
panic("TEST failed: ", test_msg, "(", n, ")\n");
}
}
func TEST_EQ(n uint, x, y *Big.Natural) {
if x.Cmp(y) != 0 {
println("TEST failed: ", test_msg, "(", n, ")\n");
println("x = ", x.String(10));
println("y = ", y.String(10));
panic();
}
}
func TestConv() {
test_msg = "TestConv";
TEST(0, a.Cmp(Bignum.NewNat(991)) == 0);
TEST(1, b.Cmp(Bignum.Fact(20)) == 0);
TEST(2, c.Cmp(Bignum.Fact(100)) == 0);
TEST(0, a.Cmp(Big.Nat(991)) == 0);
TEST(1, b.Cmp(Big.Fact(20)) == 0);
TEST(2, c.Cmp(Big.Fact(100)) == 0);
TEST(3, a.String(10) == sa);
TEST(4, b.String(10) == sb);
TEST(5, c.String(10) == sc);
......@@ -49,32 +59,81 @@ func TestShift() {
TEST(1, c.Shr(1).Cmp(c) < 0);
test_msg = "TestShift2";
for i := 0; i < 100; i++ {
TEST(i, c.Shl(uint(i)).Shr(uint(i)).Cmp(c) == 0);
for i := uint(0); i < 100; i++ {
TEST(i, c.Shl(i).Shr(i).Cmp(c) == 0);
}
test_msg = "TestShift3L";
{ const m = 3;
p := b;
f := Bignum.NewNat(1<<m);
for i := 0; i < 100; i++ {
TEST(i, b.Shl(uint(i*m)).Cmp(p) == 0);
f := Big.Nat(1<<m);
for i := uint(0); i < 100; i++ {
TEST_EQ(i, b.Shl(i*m), p);
p = p.Mul(f);
}
}
test_msg = "TestShift3R";
{ p := c;
for i := 0; c.Cmp(Bignum.NatZero) == 0; i++ {
TEST(i, c.Shr(uint(i)).Cmp(p) == 0);
for i := uint(0); c.Cmp(Big.NatZero) == 0; i++ {
TEST_EQ(i, c.Shr(i), p);
p = p.Shr(1);
}
}
}
func TestMul() {
test_msg = "TestMulA";
TEST_EQ(0, b.Mul(Big.MulRange(0, 100)), Big.Nat(0));
TEST_EQ(0, b.Mul(Big.MulRange(21, 100)), c);
test_msg = "TestMulB";
const n = 100;
p := b.Mul(c).Shl(n);
for i := uint(0); i < n; i++ {
TEST_EQ(i, b.Shl(i).Mul(c.Shl(n-i)), p);
}
}
func TestDiv() {
test_msg = "TestDivA";
TEST_EQ(0, c.Div(Big.Nat(1)), c);
TEST_EQ(1, c.Div(Big.Nat(100)), Big.Fact(99));
TEST_EQ(2, b.Div(c), Big.Nat(0));
TEST_EQ(4, Big.Nat(1).Shl(100).Div(Big.Nat(1).Shl(90)), Big.Nat(1).Shl(10));
TEST_EQ(5, c.Div(b), Big.MulRange(21, 100));
test_msg = "TestDivB";
const n = 100;
p := Big.Fact(n);
for i := uint(0); i < n; i++ {
TEST_EQ(i, p.Div(Big.MulRange(1, uint64(i))), Big.MulRange(uint64(i+1), n));
}
}
func TestMod() {
test_msg = "TestModA";
for i := uint(0); ; i++ {
d := Big.Nat(1).Shl(i);
if d.Cmp(c) < 0 {
TEST_EQ(i, c.Add(d).Mod(c), d);
} else {
TEST_EQ(i, c.Add(d).Div(c), Big.Nat(2));
//TEST_EQ(i, c.Add(d).Mod(c), d.Sub(c));
break;
}
}
}
func main() {
TestConv();
TestShift();
TestMul();
TestDiv();
TestMod();
print("PASSED\n");
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment