Commit afad8272 authored by Robert Griesemer's avatar Robert Griesemer

- div and mod (arbitrary precision)

- more tests
- some global renames

R=r
OCL=18219
CL=18219
parent 12a34358
...@@ -20,41 +20,41 @@ package Bignum ...@@ -20,41 +20,41 @@ package Bignum
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0] // x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
// //
// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n, // with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n,
// with the digits x[i] as the array elements. 0 is represented as an // with the digits x[i] as the array elements.
// empty array (length == 0).
// //
// A natural number is normalized if the array contains no leading 0 digits. // A natural number is normalized if the array contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur which are // During arithmetic operations, denormalized values may occur which are
// always normalized before returning the final result. // always normalized before returning the final result. The normalized
// representation of 0 is the empty array (length = 0).
// //
// The base B is chosen as large as possible on a given platform but there // The base B is chosen as large as possible on a given platform but there
// are a few constraints besides the largest unsigned integer type available. // are a few constraints besides the size of the largest unsigned integer
// type available.
// TODO describe the constraints. // TODO describe the constraints.
type Word uint64;
const LogW = 64; const LogW = 64;
const LogH = 4; // bits for a hex digit (= "small" number) const LogH = 4; // bits for a hex digit (= "small" number)
const H = 1 << LogH;
const LogB = LogW - LogH; const LogB = LogW - LogH;
const L = LogB;
const B = 1 << LogB;
const M = B - 1;
// For division
const ( const (
L3 = L / 3; L3 = LogB / 3;
B3 = 1 << L3; B3 = 1 << L3;
M3 = B3 - 1; M3 = B3 - 1;
L2 = L3 * 2;
B2 = 1 << L2;
M2 = B2 - 1;
L = L3 * 3;
B = 1 << L;
M = B - 1;
) )
type ( type (
Word3 uint32; Digit3 uint32;
Natural3 [] Word3; Digit uint64;
) )
...@@ -69,17 +69,26 @@ func assert(p bool) { ...@@ -69,17 +69,26 @@ func assert(p bool) {
} }
func IsSmall(x Word) bool { func IsSmall(x Digit) bool {
return x < H; return x < 1<<LogH;
} }
func Split(x Word) (Word, Word) { func Split(x Digit) (Digit, Digit) {
return x>>L, x&M; return x>>L, x&M;
} }
export func Dump(x *[]Word) { export func Dump(x *[]Digit) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]);
}
println();
}
export func Dump3(x *[]Digit3) {
print("[", len(x), "]"); print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- { for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]); print(" ", x[i]);
...@@ -91,11 +100,11 @@ export func Dump(x *[]Word) { ...@@ -91,11 +100,11 @@ export func Dump(x *[]Word) {
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Natural numbers // Natural numbers
export type Natural []Word; export type Natural []Digit;
export var NatZero *Natural = new(Natural, 0); export var NatZero *Natural = new(Natural, 0);
export func NewNat(x Word) *Natural { export func Nat(x Digit) *Natural {
var z *Natural; var z *Natural;
switch { switch {
case x == 0: case x == 0:
...@@ -122,7 +131,7 @@ func Normalize(x *Natural) *Natural { ...@@ -122,7 +131,7 @@ func Normalize(x *Natural) *Natural {
} }
func Normalize3(x *Natural3) *Natural3 { func Normalize3(x *[]Digit3) *[]Digit3 {
n := len(x); n := len(x);
for n > 0 && x[n - 1] == 0 { n-- } for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) { if n < len(x) {
...@@ -146,7 +155,7 @@ func (x *Natural) Add(y *Natural) *Natural { ...@@ -146,7 +155,7 @@ func (x *Natural) Add(y *Natural) *Natural {
assert(n >= m); assert(n >= m);
z := new(Natural, n + 1); z := new(Natural, n + 1);
c := Word(0); c := Digit(0);
for i := 0; i < m; i++ { c, z[i] = Split(x[i] + y[i] + c); } for i := 0; i < m; i++ { c, z[i] = Split(x[i] + y[i] + c); }
for i := m; i < n; i++ { c, z[i] = Split(x[i] + c); } for i := m; i < n; i++ { c, z[i] = Split(x[i] + c); }
z[n] = c; z[n] = c;
...@@ -161,8 +170,8 @@ func (x *Natural) Sub(y *Natural) *Natural { ...@@ -161,8 +170,8 @@ func (x *Natural) Sub(y *Natural) *Natural {
assert(n >= m); assert(n >= m);
z := new(Natural, n); z := new(Natural, n);
c := Word(0); c := Digit(0);
for i := 0; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); } for i := 0; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); } // TODO verify asr!!!
for i := m; i < n; i++ { c, z[i] = Split(x[i] + c); } for i := m; i < n; i++ { c, z[i] = Split(x[i] + c); }
assert(c == 0); // x.Sub(y) must be called with x >= y assert(c == 0); // x.Sub(y) must be called with x >= y
...@@ -171,7 +180,7 @@ func (x *Natural) Sub(y *Natural) *Natural { ...@@ -171,7 +180,7 @@ func (x *Natural) Sub(y *Natural) *Natural {
// Computes x = x*a + c (in place) for "small" a's. // Computes x = x*a + c (in place) for "small" a's.
func (x* Natural) MulAdd1(a, c Word) *Natural { func (x* Natural) MulAdd1(a, c Digit) *Natural {
assert(IsSmall(a-1) && IsSmall(c)); assert(IsSmall(a-1) && IsSmall(c));
n := len(x); n := len(x);
z := new(Natural, n + 1); z := new(Natural, n + 1);
...@@ -184,7 +193,7 @@ func (x* Natural) MulAdd1(a, c Word) *Natural { ...@@ -184,7 +193,7 @@ func (x* Natural) MulAdd1(a, c Word) *Natural {
// Returns c = x*y div B, z = x*y mod B. // Returns c = x*y div B, z = x*y mod B.
func Mul1(x, y Word) (Word, Word) { func Mul1(x, y Digit) (Digit, Digit) {
// Split x and y into 2 sub-digits each (in base sqrt(B)), // Split x and y into 2 sub-digits each (in base sqrt(B)),
// multiply the digits separately while avoiding overflow, // multiply the digits separately while avoiding overflow,
// and return the product as two separate digits. // and return the product as two separate digits.
...@@ -223,7 +232,7 @@ func (x *Natural) Mul(y *Natural) *Natural { ...@@ -223,7 +232,7 @@ func (x *Natural) Mul(y *Natural) *Natural {
for j := 0; j < m; j++ { for j := 0; j < m; j++ {
d := y[j]; d := y[j];
if d != 0 { if d != 0 {
c := Word(0); c := Digit(0);
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
// z[i+j] += x[i]*d + c; // z[i+j] += x[i]*d + c;
z1, z0 := Mul1(x[i], d); z1, z0 := Mul1(x[i], d);
...@@ -238,13 +247,13 @@ func (x *Natural) Mul(y *Natural) *Natural { ...@@ -238,13 +247,13 @@ func (x *Natural) Mul(y *Natural) *Natural {
} }
func Shl1(x, c Word, s uint) (Word, Word) { func Shl1(x, c Digit, s uint) (Digit, Digit) {
assert(s <= LogB); assert(s <= LogB);
return x >> (LogB - s), x << s & M | c return x >> (LogB - s), x << s & M | c
} }
func Shr1(x, c Word, s uint) (Word, Word) { func Shr1(x, c Digit, s uint) (Digit, Digit) {
assert(s <= LogB); assert(s <= LogB);
return x << (LogB - s) & M, x >> s | c return x << (LogB - s) & M, x >> s | c
} }
...@@ -256,7 +265,7 @@ func (x *Natural) Shl(s uint) *Natural { ...@@ -256,7 +265,7 @@ func (x *Natural) Shl(s uint) *Natural {
s = s % LogB; s = s % LogB;
z := new(Natural, n + si + 1); z := new(Natural, n + si + 1);
c := Word(0); c := Digit(0);
for i := 0; i < n; i++ { c, z[i+si] = Shl1(x[i], c, s); } for i := 0; i < n; i++ { c, z[i+si] = Shl1(x[i], c, s); }
z[n+si] = c; z[n+si] = c;
...@@ -272,83 +281,184 @@ func (x *Natural) Shr(s uint) *Natural { ...@@ -272,83 +281,184 @@ func (x *Natural) Shr(s uint) *Natural {
assert(si <= n); assert(si <= n);
z := new(Natural, n - si); z := new(Natural, n - si);
c := Word(0); c := Digit(0);
for i := n - 1; i >= si; i-- { c, z[i-si] = Shr1(x[i], c, s); } for i := n - 1; i >= si; i-- { c, z[i-si] = Shr1(x[i], c, s); }
return Normalize(z); return Normalize(z);
} }
func SplitBase(x *Natural) *Natural3 { // DivMod needs multi-precision division which is not available if Digit
xl := len(x); // is already using the largest uint size. Split base before division,
z := new(Natural3, xl * 3); // and merge again after. Each Digit is split into 3 Digit3's.
for i, j := 0, 0; i < xl; i, j = i + 1, j + 3 {
func SplitBase(x *Natural) *[]Digit3 {
// TODO Use Log() for better result - don't need Normalize3 at the end!
n := len(x);
z := new([]Digit3, n*3 + 1); // add space for extra digit (used by DivMod)
for i, j := 0, 0; i < n; i, j = i+1, j+3 {
t := x[i]; t := x[i];
z[j] = Word3(t & M3); t >>= L3; j++; z[j+0] = Digit3(t >> (L3*0) & M3);
z[j] = Word3(t & M3); t >>= L3; j++; z[j+1] = Digit3(t >> (L3*1) & M3);
z[j] = Word3(t & M3); t >>= L3; j++; z[j+2] = Digit3(t >> (L3*2) & M3);
} }
return Normalize3(z); return Normalize3(z);
} }
func Scale(x *Natural, f Word) *Natural3 { func MergeBase(x *[]Digit3) *Natural {
return nil; i := len(x);
j := (i+2)/3;
z := new(Natural, j);
switch i%3 {
case 1: z[j-1] = Digit(x[i-1]); i--; j--;
case 2: z[j-1] = Digit(x[i-1])<<L3 | Digit(x[i-2]); i -= 2; j--;
case 0:
}
for i >= 3 {
z[j-1] = ((Digit(x[i-1])<<L3) | Digit(x[i-2]))<<L3 | Digit(x[i-3]);
i -= 3;
j--;
}
assert(j == 0);
return Normalize(z);
} }
func TrialDigit(r, d *Natural3, k, m int) Word { func Split3(x Digit) (Digit, Digit3) {
km := k + m; return uint64(int64(x)>>L3), Digit3(x&M3)
assert(2 <= m && m <= km); }
r3 := (Word(r[km]) << L3 + Word(r[km - 1])) << L3 + Word(r[km - 2]);
d2 := Word(d[m - 1]) << L3 + Word(d[m - 2]);
qt := r3 / d2; func Product(x *[]Digit3, y Digit) {
if qt >= B { n := len(x);
qt = B - 1; c := Digit(0);
for i := 0; i < n; i++ { c, x[i] = Split3(Digit(x[i])*y + c) }
assert(c == 0);
}
func Quotient(x *[]Digit3, y Digit) {
n := len(x);
c := Digit(0);
for i := n-1; i >= 0; i-- {
t := c*B3 + Digit(x[i]);
c, x[i] = t%y, Digit3(t/y);
} }
return qt; assert(c == 0);
} }
func DivMod(x, y *Natural) { // Division and modulo computation - destroys x and y. Based on the
xl := len(x); // algorithms described in:
yl := len(y); //
assert(2 <= yl && yl <= xl); // use special-case algorithm otherwise // 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical
// Algorithms." Addison-Wesley, Reading, 1969.
//
// 2) P. Brinch Hansen, Multiple-length division revisited: A tour of the
// minefield. "Software - Practice and Experience 24", (June 1994),
// 579-601. John Wiley & Sons, Ltd.
//
// Specifically, the inplace computation of quotient and remainder
// is described in 1), while 2) provides the background for a more
// accurate initial guess of the trial digit.
f := B / (y[yl - 1] + 1); func DivMod(x, y *[]Digit3) (*[]Digit3, *[]Digit3) {
r := Scale(x, f); const b = B3;
d := Scale(y, f);
n := len(r);
m := len(d);
for k := n - m; k >= 0; k-- { n := len(x);
qt := TrialDigit(r, d, k, m); m := len(y);
assert(m > 0); // division by zero
assert(n+1 <= cap(x)); // space for one extra digit (should it be == ?)
x = x[0 : n + 1];
if m == 1 {
// division by single digit
d := Digit(y[0]);
c := Digit(0);
for i := n; i > 0; i-- {
t := c*b + Digit(x[i-1]);
c, x[i] = t%d, Digit3(t/d);
} }
x[0] = Digit3(c);
} else if m > n {
// quotient = 0, remainder = x
// TODO in this case we shouldn't even split base - FIX THIS
m = n;
} else {
// general case
assert(2 <= m && m <= n);
assert(x[n] == 0);
// normalize x and y
f := b/(Digit(y[m-1]) + 1);
Product(x, f);
Product(y, f);
assert(b/2 <= y[m-1] && y[m-1] < b); // incorrect scaling
d2 := Digit(y[m-1])*b + Digit(y[m-2]);
for i := n-m; i >= 0; i-- {
k := i+m;
// compute trial digit
r3 := (Digit(x[k])*b + Digit(x[k-1]))*b + Digit(x[k-2]);
q := r3/d2;
if q >= b { q = b-1 }
// subtract y*q
c := Digit(0);
for j := 0; j < m; j++ {
c, x[i+j] = Split3(c + Digit(x[i+j]) - Digit(y[j])*q);
}
// correct if trial digit was too large
if c + Digit(x[k]) != 0 {
// add y
c := Digit(0);
for j := 0; j < m; j++ {
c, x[i+j] = Split3(c + Digit(x[i+j]) + Digit(y[j]));
}
// correct trial digit
q--;
}
x[k] = Digit3(q);
}
// undo normalization for remainder
Quotient(x[0 : m], f);
}
return x[m : n+1], x[0 : m];
} }
func (x *Natural) Div(y *Natural) *Natural { func (x *Natural) Div(y *Natural) *Natural {
panic("UNIMPLEMENTED"); q, r := DivMod(SplitBase(x), SplitBase(y));
return nil; return MergeBase(q);
} }
func (x *Natural) Mod(y *Natural) *Natural { func (x *Natural) Mod(y *Natural) *Natural {
panic("UNIMPLEMENTED"); q, r := DivMod(SplitBase(x), SplitBase(y));
return nil; return MergeBase(r);
} }
func (x *Natural) Cmp(y *Natural) int { func (x *Natural) Cmp(y *Natural) int {
xl := len(x); n := len(x);
yl := len(y); m := len(y);
if xl != yl || xl == 0 { if n != m || n == 0 {
return xl - yl; return n - m;
} }
i := xl - 1; i := n - 1;
for i > 0 && x[i] == y[i] { i--; } for i > 0 && x[i] == y[i] { i--; }
d := 0; d := 0;
...@@ -361,7 +471,7 @@ func (x *Natural) Cmp(y *Natural) int { ...@@ -361,7 +471,7 @@ func (x *Natural) Cmp(y *Natural) int {
} }
func Log1(x Word) int { func Log1(x Digit) int {
n := -1; n := -1;
for x != 0 { x >>= 1; n++; } for x != 0 { x >>= 1; n++; }
return n; return n;
...@@ -437,10 +547,10 @@ func Copy(x *Natural) *Natural { ...@@ -437,10 +547,10 @@ func Copy(x *Natural) *Natural {
// Computes x = x div d (in place - the recv maybe modified) for "small" d's. // Computes x = x div d (in place - the recv maybe modified) for "small" d's.
// Returns updated x and x mod d. // Returns updated x and x mod d.
func (x *Natural) DivMod1(d Word) (*Natural, Word) { func (x *Natural) DivMod1(d Digit) (*Natural, Digit) {
assert(0 < d && IsSmall(d - 1)); assert(0 < d && IsSmall(d - 1));
c := Word(0); c := Digit(0);
for i := len(x) - 1; i >= 0; i-- { for i := len(x) - 1; i >= 0; i-- {
c = c<<L + x[i]; c = c<<L + x[i];
x[i] = c/d; x[i] = c/d;
...@@ -451,7 +561,7 @@ func (x *Natural) DivMod1(d Word) (*Natural, Word) { ...@@ -451,7 +561,7 @@ func (x *Natural) DivMod1(d Word) (*Natural, Word) {
} }
func (x *Natural) String(base Word) string { func (x *Natural) String(base Digit) string {
if x.IsZero() { if x.IsZero() {
return "0"; return "0";
} }
...@@ -469,7 +579,7 @@ func (x *Natural) String(base Word) string { ...@@ -469,7 +579,7 @@ func (x *Natural) String(base Word) string {
x = Copy(x); // don't destroy recv x = Copy(x); // don't destroy recv
for !x.IsZero() { for !x.IsZero() {
i--; i--;
var d Word; var d Digit;
x, d = x.DivMod1(base); x, d = x.DivMod1(base);
s[i] = hex[d]; s[i] = hex[d];
}; };
...@@ -478,11 +588,11 @@ func (x *Natural) String(base Word) string { ...@@ -478,11 +588,11 @@ func (x *Natural) String(base Word) string {
} }
func MulRange(a, b Word) *Natural { export func MulRange(a, b Digit) *Natural {
switch { switch {
case a > b: return NewNat(1); case a > b: return Nat(1);
case a == b: return NewNat(a); case a == b: return Nat(a);
case a + 1 == b: return NewNat(a).Mul(NewNat(b)); case a + 1 == b: return Nat(a).Mul(Nat(b));
} }
m := (a + b)>>1; m := (a + b)>>1;
assert(a <= m && m < b); assert(a <= m && m < b);
...@@ -490,26 +600,26 @@ func MulRange(a, b Word) *Natural { ...@@ -490,26 +600,26 @@ func MulRange(a, b Word) *Natural {
} }
export func Fact(n Word) *Natural { export func Fact(n Digit) *Natural {
// Using MulRange() instead of the basic for-loop // Using MulRange() instead of the basic for-loop
// lead to faster factorial computation. // lead to faster factorial computation.
return MulRange(2, n); return MulRange(2, n);
} }
func HexValue(ch byte) Word { func HexValue(ch byte) Digit {
d := Word(H); d := Digit(1 << LogH);
switch { switch {
case '0' <= ch && ch <= '9': d = Word(ch - '0'); case '0' <= ch && ch <= '9': d = Digit(ch - '0');
case 'a' <= ch && ch <= 'f': d = Word(ch - 'a') + 10; case 'a' <= ch && ch <= 'f': d = Digit(ch - 'a') + 10;
case 'A' <= ch && ch <= 'F': d = Word(ch - 'A') + 10; case 'A' <= ch && ch <= 'F': d = Digit(ch - 'A') + 10;
} }
return d; return d;
} }
// TODO auto-detect base if base argument is 0 // TODO auto-detect base if base argument is 0
export func NatFromString(s string, base Word) *Natural { export func NatFromString(s string, base Digit) *Natural {
x := NatZero; x := NatZero;
for i := 0; i < len(s); i++ { for i := 0; i < len(s); i++ {
d := HexValue(s[i]); d := HexValue(s[i]);
...@@ -532,6 +642,11 @@ export type Integer struct { ...@@ -532,6 +642,11 @@ export type Integer struct {
} }
export func Int(x int64) *Integer {
return nil;
}
func (x *Integer) Add(y *Integer) *Integer { func (x *Integer) Add(y *Integer) *Integer {
var z *Integer; var z *Integer;
if x.sign == y.sign { if x.sign == y.sign {
...@@ -603,7 +718,7 @@ func (x *Integer) Cmp(y *Integer) int { ...@@ -603,7 +718,7 @@ func (x *Integer) Cmp(y *Integer) int {
} }
func (x *Integer) String(base Word) string { func (x *Integer) String(base Digit) string {
if x.mant.IsZero() { if x.mant.IsZero() {
return "0"; return "0";
} }
...@@ -615,7 +730,7 @@ func (x *Integer) String(base Word) string { ...@@ -615,7 +730,7 @@ func (x *Integer) String(base Word) string {
} }
export func IntFromString(s string, base Word) *Integer { export func IntFromString(s string, base Digit) *Integer {
// get sign, if any // get sign, if any
sign := false; sign := false;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') { if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
package main package main
import Bignum "bignum" import Big "bignum"
const ( const (
sa = "991"; sa = "991";
...@@ -14,25 +14,35 @@ const ( ...@@ -14,25 +14,35 @@ const (
var ( var (
a = Bignum.NatFromString(sa, 10); a = Big.NatFromString(sa, 10);
b = Bignum.NatFromString(sb, 10); b = Big.NatFromString(sb, 10);
c = Bignum.NatFromString(sc, 10); c = Big.NatFromString(sc, 10);
) )
var test_msg string; var test_msg string;
func TEST(n int, b bool) { func TEST(n uint, b bool) {
if !b { if !b {
panic("TEST failed: ", test_msg, "(", n, ")\n"); panic("TEST failed: ", test_msg, "(", n, ")\n");
} }
} }
func TEST_EQ(n uint, x, y *Big.Natural) {
if x.Cmp(y) != 0 {
println("TEST failed: ", test_msg, "(", n, ")\n");
println("x = ", x.String(10));
println("y = ", y.String(10));
panic();
}
}
func TestConv() { func TestConv() {
test_msg = "TestConv"; test_msg = "TestConv";
TEST(0, a.Cmp(Bignum.NewNat(991)) == 0); TEST(0, a.Cmp(Big.Nat(991)) == 0);
TEST(1, b.Cmp(Bignum.Fact(20)) == 0); TEST(1, b.Cmp(Big.Fact(20)) == 0);
TEST(2, c.Cmp(Bignum.Fact(100)) == 0); TEST(2, c.Cmp(Big.Fact(100)) == 0);
TEST(3, a.String(10) == sa); TEST(3, a.String(10) == sa);
TEST(4, b.String(10) == sb); TEST(4, b.String(10) == sb);
TEST(5, c.String(10) == sc); TEST(5, c.String(10) == sc);
...@@ -49,32 +59,81 @@ func TestShift() { ...@@ -49,32 +59,81 @@ func TestShift() {
TEST(1, c.Shr(1).Cmp(c) < 0); TEST(1, c.Shr(1).Cmp(c) < 0);
test_msg = "TestShift2"; test_msg = "TestShift2";
for i := 0; i < 100; i++ { for i := uint(0); i < 100; i++ {
TEST(i, c.Shl(uint(i)).Shr(uint(i)).Cmp(c) == 0); TEST(i, c.Shl(i).Shr(i).Cmp(c) == 0);
} }
test_msg = "TestShift3L"; test_msg = "TestShift3L";
{ const m = 3; { const m = 3;
p := b; p := b;
f := Bignum.NewNat(1<<m); f := Big.Nat(1<<m);
for i := 0; i < 100; i++ { for i := uint(0); i < 100; i++ {
TEST(i, b.Shl(uint(i*m)).Cmp(p) == 0); TEST_EQ(i, b.Shl(i*m), p);
p = p.Mul(f); p = p.Mul(f);
} }
} }
test_msg = "TestShift3R"; test_msg = "TestShift3R";
{ p := c; { p := c;
for i := 0; c.Cmp(Bignum.NatZero) == 0; i++ { for i := uint(0); c.Cmp(Big.NatZero) == 0; i++ {
TEST(i, c.Shr(uint(i)).Cmp(p) == 0); TEST_EQ(i, c.Shr(i), p);
p = p.Shr(1); p = p.Shr(1);
} }
} }
} }
func TestMul() {
test_msg = "TestMulA";
TEST_EQ(0, b.Mul(Big.MulRange(0, 100)), Big.Nat(0));
TEST_EQ(0, b.Mul(Big.MulRange(21, 100)), c);
test_msg = "TestMulB";
const n = 100;
p := b.Mul(c).Shl(n);
for i := uint(0); i < n; i++ {
TEST_EQ(i, b.Shl(i).Mul(c.Shl(n-i)), p);
}
}
func TestDiv() {
test_msg = "TestDivA";
TEST_EQ(0, c.Div(Big.Nat(1)), c);
TEST_EQ(1, c.Div(Big.Nat(100)), Big.Fact(99));
TEST_EQ(2, b.Div(c), Big.Nat(0));
TEST_EQ(4, Big.Nat(1).Shl(100).Div(Big.Nat(1).Shl(90)), Big.Nat(1).Shl(10));
TEST_EQ(5, c.Div(b), Big.MulRange(21, 100));
test_msg = "TestDivB";
const n = 100;
p := Big.Fact(n);
for i := uint(0); i < n; i++ {
TEST_EQ(i, p.Div(Big.MulRange(1, uint64(i))), Big.MulRange(uint64(i+1), n));
}
}
func TestMod() {
test_msg = "TestModA";
for i := uint(0); ; i++ {
d := Big.Nat(1).Shl(i);
if d.Cmp(c) < 0 {
TEST_EQ(i, c.Add(d).Mod(c), d);
} else {
TEST_EQ(i, c.Add(d).Div(c), Big.Nat(2));
//TEST_EQ(i, c.Add(d).Mod(c), d.Sub(c));
break;
}
}
}
func main() { func main() {
TestConv(); TestConv();
TestShift(); TestShift();
TestMul();
TestDiv();
TestMod();
print("PASSED\n"); print("PASSED\n");
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment