Commit b1785a50 authored by David Chase's avatar David Chase

cmd/compile: Tinkering with schedule for debug and regalloc

This adds a heap-based proper priority queue to the
scheduler which made a relatively easy to test quite a few
heuristics that "ought to work well".  For go tools
themselves (which may not be representative) the heuristic
that works best is (1) in line-number-order, then (2) from
more to fewer args, then (3) in variable ID order.  Trying
to improve this with information about use at end of
blocks turned out to be fruitless -- all of my naive
attempts at using that information turned out worse than
ignoring it.  I can confirm that the stores-early heuristic
tends to help; removing it makes the results slightly worse.

My metric is code size reduction, which I take to mean fewer
spills from register allocation.  It's not uniform.
Here's the endpoints for "vet" from one set of pretty-good
heuristics (this is representative at least).

-2208 time.parse 13472 15680 -14.081633%
-1514 runtime.pclntab 1002058 1003572 -0.150861%
-352 time.Time.AppendFormat 9952 10304 -3.416149%
-112 runtime.runGCProg 1984 2096 -5.343511%
-64 regexp/syntax.(*parser).factor 7264 7328 -0.873362%
-44 go.string.alldata 238630 238674 -0.018435%

48 math/big.(*Float).round 1376 1328 3.614458%
48 text/tabwriter.(*Writer).writeLines 1232 1184 4.054054%
48 math/big.shr 832 784 6.122449%
88 go.func.* 75174 75086 0.117199%
96 time.Date 1968 1872 5.128205%

Overall there appears to be an 0.1% decrease in text size.
No timings yet, and given the distribution of size reductions
it might make sense to wait on those.

addr2line  text (code) = -4392 bytes (-0.156273%)
api  text (code) = -5502 bytes (-0.147644%)
asm  text (code) = -5254 bytes (-0.187810%)
cgo  text (code) = -4886 bytes (-0.148846%)
compile  text (code) = -1577 bytes (-0.019346%) * changed
cover  text (code) = -5236 bytes (-0.137992%)
dist  text (code) = -5015 bytes (-0.167829%)
doc  text (code) = -5180 bytes (-0.182121%)
fix  text (code) = -5000 bytes (-0.215148%)
link  text (code) = -5092 bytes (-0.152712%)
newlink  text (code) = -5204 bytes (-0.196986%)
nm  text (code) = -4398 bytes (-0.156018%)
objdump  text (code) = -4582 bytes (-0.155046%)
pack  text (code) = -4503 bytes (-0.294287%)
pprof  text (code) = -6314 bytes (-0.085177%)
trace  text (code) = -5856 bytes (-0.097818%)
vet  text (code) = -5696 bytes (-0.117334%)
yacc  text (code) = -4971 bytes (-0.213817%)

This leaves me sorely tempted to look into a "real" scheduler
to try to do a better job, but I think it might make more
sense to look into getting loop information into the
register allocator instead.

Fixes #14577.

Change-Id: I5238b83284ce76dea1eb94084a8cd47277db6827
Reviewed-on: https://go-review.googlesource.com/20240
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: 's avatarKeith Randall <khr@golang.org>
parent 481fe590
......@@ -4,6 +4,8 @@
package ssa
import "container/heap"
const (
ScorePhi = iota // towards top of block
ScoreVarDef
......@@ -11,10 +13,31 @@ const (
ScoreDefault
ScoreFlags
ScoreControl // towards bottom of block
ScoreCount // not a real score
)
type ValHeap struct {
a []*Value
less func(a, b *Value) bool
}
func (h ValHeap) Len() int { return len(h.a) }
func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
func (h *ValHeap) Push(x interface{}) {
// Push and Pop use pointer receivers because they modify the slice's length,
// not just its contents.
v := x.(*Value)
h.a = append(h.a, v)
}
func (h *ValHeap) Pop() interface{} {
old := h.a
n := len(old)
x := old[n-1]
h.a = old[0 : n-1]
return x
}
func (h ValHeap) Less(i, j int) bool { return h.less(h.a[i], h.a[j]) }
// Schedule the Values in each Block. After this phase returns, the
// order of b.Values matters and is the order in which those values
// will appear in the assembly output. For now it generates a
......@@ -23,22 +46,54 @@ const (
func schedule(f *Func) {
// For each value, the number of times it is used in the block
// by values that have not been scheduled yet.
uses := make([]int, f.NumValues())
uses := make([]int32, f.NumValues())
// "priority" for a value
score := make([]uint8, f.NumValues())
score := make([]int8, f.NumValues())
// scheduling order. We queue values in this list in reverse order.
var order []*Value
// priority queue of legally schedulable (0 unscheduled uses) values
var priq [ScoreCount][]*Value
// maps mem values to the next live memory value
nextMem := make([]*Value, f.NumValues())
// additional pretend arguments for each Value. Used to enforce load/store ordering.
additionalArgs := make([][]*Value, f.NumValues())
for _, b := range f.Blocks {
// Compute score. Larger numbers are scheduled closer to the end of the block.
for _, v := range b.Values {
switch {
case v.Op == OpAMD64LoweredGetClosurePtr:
// We also score GetLoweredClosurePtr as early as possible to ensure that the
// context register is not stomped. GetLoweredClosurePtr should only appear
// in the entry block where there are no phi functions, so there is no
// conflict or ambiguity here.
if b != f.Entry {
f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
}
score[v.ID] = ScorePhi
case v.Op == OpPhi:
// We want all the phis first.
score[v.ID] = ScorePhi
case v.Op == OpVarDef:
// We want all the vardefs next.
score[v.ID] = ScoreVarDef
case v.Type.IsMemory():
// Schedule stores as early as possible. This tends to
// reduce register pressure. It also helps make sure
// VARDEF ops are scheduled before the corresponding LEA.
score[v.ID] = ScoreMemory
case v.Type.IsFlags():
// Schedule flag register generation as late as possible.
// This makes sure that we only have one live flags
// value at a time.
score[v.ID] = ScoreFlags
default:
score[v.ID] = ScoreDefault
}
}
}
for _, b := range f.Blocks {
// Find store chain for block.
// Store chains for different blocks overwrite each other, so
......@@ -77,38 +132,7 @@ func schedule(f *Func) {
uses[v.ID]++
}
}
// Compute score. Larger numbers are scheduled closer to the end of the block.
for _, v := range b.Values {
switch {
case v.Op == OpAMD64LoweredGetClosurePtr:
// We also score GetLoweredClosurePtr as early as possible to ensure that the
// context register is not stomped. GetLoweredClosurePtr should only appear
// in the entry block where there are no phi functions, so there is no
// conflict or ambiguity here.
if b != f.Entry {
f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
}
score[v.ID] = ScorePhi
case v.Op == OpPhi:
// We want all the phis first.
score[v.ID] = ScorePhi
case v.Op == OpVarDef:
// We want all the vardefs next.
score[v.ID] = ScoreVarDef
case v.Type.IsMemory():
// Schedule stores as early as possible. This tends to
// reduce register pressure. It also helps make sure
// VARDEF ops are scheduled before the corresponding LEA.
score[v.ID] = ScoreMemory
case v.Type.IsFlags():
// Schedule flag register generation as late as possible.
// This makes sure that we only have one live flags
// value at a time.
score[v.ID] = ScoreFlags
default:
score[v.ID] = ScoreDefault
}
}
if b.Control != nil && b.Control.Op != OpPhi {
// Force the control value to be scheduled at the end,
// unless it is a phi value (which must be first).
......@@ -130,14 +154,32 @@ func schedule(f *Func) {
}
}
// Initialize priority queue with schedulable values.
for i := range priq {
priq[i] = priq[i][:0]
// To put things into a priority queue
// The values that should come last are least.
priq := &ValHeap{
a: make([]*Value, 0, 8), // TODO allocate once and reuse.
less: func(x, y *Value) bool {
sx := score[x.ID]
sy := score[y.ID]
if c := sx - sy; c != 0 {
return c > 0 // higher score comes later.
}
if x.Line != y.Line { // Favor in-order line stepping
return x.Line > y.Line
}
if x.Op != OpPhi {
if c := len(x.Args) - len(y.Args); c != 0 {
return c < 0 // smaller args comes later
}
}
return x.ID > y.ID
},
}
// Initialize priority queue with schedulable values.
for _, v := range b.Values {
if uses[v.ID] == 0 {
s := score[v.ID]
priq[s] = append(priq[s], v)
heap.Push(priq, v)
}
}
......@@ -145,20 +187,14 @@ func schedule(f *Func) {
order = order[:0]
for {
// Find highest priority schedulable value.
var v *Value
for i := len(priq) - 1; i >= 0; i-- {
n := len(priq[i])
if n == 0 {
continue
}
v = priq[i][n-1]
priq[i] = priq[i][:n-1]
break
}
if v == nil {
// Note that schedule is assembled backwards.
if priq.Len() == 0 {
break
}
v := heap.Pop(priq).(*Value)
// Add it to the schedule.
order = append(order, v)
......@@ -170,16 +206,14 @@ func schedule(f *Func) {
uses[w.ID]--
if uses[w.ID] == 0 {
// All uses scheduled, w is now schedulable.
s := score[w.ID]
priq[s] = append(priq[s], w)
heap.Push(priq, w)
}
}
for _, w := range additionalArgs[v.ID] {
uses[w.ID]--
if uses[w.ID] == 0 {
// All uses scheduled, w is now schedulable.
s := score[w.ID]
priq[s] = append(priq[s], w)
heap.Push(priq, w)
}
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment