Commit b4cae4ae authored by Russ Cox's avatar Russ Cox

exp/regexp/syntax: finish Regexp manipulation

Except for the inevitable bug fixes, the Regexp code is done.

R=sam.thorogood, r
CC=golang-dev
https://golang.org/cl/4635082
parent a809abaf
......@@ -106,8 +106,6 @@ func (p *parser) reuse(re *Regexp) {
// push pushes the regexp re onto the parse stack and returns the regexp.
func (p *parser) push(re *Regexp) *Regexp {
// TODO: compute simple
if re.Op == OpCharClass && len(re.Rune) == 2 && re.Rune[0] == re.Rune[1] {
// Single rune.
if p.maybeConcat(re.Rune[0], p.flags&^FoldCase) {
......@@ -250,7 +248,7 @@ func (p *parser) concat() *Regexp {
return p.push(p.newRegexp(OpEmptyMatch))
}
return p.collapse(subs, OpConcat)
return p.push(p.collapse(subs, OpConcat))
}
// alternate replaces the top of the stack (above the topmost '(') with its alternation.
......@@ -276,7 +274,7 @@ func (p *parser) alternate() *Regexp {
return p.push(p.newRegexp(OpNoMatch))
}
return p.collapse(subs, OpAlternate)
return p.push(p.collapse(subs, OpAlternate))
}
// cleanAlt cleans re for eventual inclusion in an alternation.
......@@ -302,13 +300,13 @@ func cleanAlt(re *Regexp) {
}
}
// collapse pushes the result of applying op to sub
// onto the stack. If sub contains op nodes, they all
// get flattened into a single node.
// sub points into p.stack so it cannot be kept.
// collapse returns the result of applying op to sub.
// If sub contains op nodes, they all get hoisted up
// so that there is never a concat of a concat or an
// alternate of an alternate.
func (p *parser) collapse(subs []*Regexp, op Op) *Regexp {
if len(subs) == 1 {
return p.push(subs[0])
return subs[0]
}
re := p.newRegexp(op)
re.Sub = re.Sub0[:0]
......@@ -320,7 +318,295 @@ func (p *parser) collapse(subs []*Regexp, op Op) *Regexp {
re.Sub = append(re.Sub, sub)
}
}
return p.push(re)
if op == OpAlternate {
re.Sub = p.factor(re.Sub, re.Flags)
if len(re.Sub) == 1 {
old := re
re = re.Sub[0]
p.reuse(old)
}
}
return re
}
// factor factors common prefixes from the alternation list sub.
// It returns a replacement list that reuses the same storage and
// frees (passes to p.reuse) any removed *Regexps.
//
// For example,
// ABC|ABD|AEF|BCX|BCY
// simplifies by literal prefix extraction to
// A(B(C|D)|EF)|BC(X|Y)
// which simplifies by character class introduction to
// A(B[CD]|EF)|BC[XY]
//
func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp {
if len(sub) < 2 {
return sub
}
// Round 1: Factor out common literal prefixes.
var str []int
var strflags Flags
start := 0
out := sub[:0]
for i := 0; i <= len(sub); i++ {
// Invariant: the Regexps that were in sub[0:start] have been
// used or marked for reuse, and the slice space has been reused
// for out (len(out) <= start).
//
// Invariant: sub[start:i] consists of regexps that all begin
// with str as modified by strflags.
var istr []int
var iflags Flags
if i < len(sub) {
istr, iflags = p.leadingString(sub[i])
if iflags == strflags {
same := 0
for same < len(str) && same < len(istr) && str[same] == istr[same] {
same++
}
if same > 0 {
// Matches at least one rune in current range.
// Keep going around.
str = str[:same]
continue
}
}
}
// Found end of a run with common leading literal string:
// sub[start:i] all begin with str[0:len(str)], but sub[i]
// does not even begin with str[0].
//
// Factor out common string and append factored expression to out.
if i == start {
// Nothing to do - run of length 0.
} else if i == start+1 {
// Just one: don't bother factoring.
out = append(out, sub[start])
} else {
// Construct factored form: prefix(suffix1|suffix2|...)
prefix := p.newRegexp(OpLiteral)
prefix.Flags = strflags
prefix.Rune = append(prefix.Rune[:0], str...)
for j := start; j < i; j++ {
sub[j] = p.removeLeadingString(sub[j], len(str))
}
suffix := p.collapse(sub[start:i], OpAlternate) // recurse
re := p.newRegexp(OpConcat)
re.Sub = append(re.Sub[:0], prefix, suffix)
out = append(out, re)
}
// Prepare for next iteration.
start = i
str = istr
strflags = iflags
}
sub = out
// Round 2: Factor out common complex prefixes,
// just the first piece of each concatenation,
// whatever it is. This is good enough a lot of the time.
start = 0
out = sub[:0]
var first *Regexp
for i := 0; i <= len(sub); i++ {
// Invariant: the Regexps that were in sub[0:start] have been
// used or marked for reuse, and the slice space has been reused
// for out (len(out) <= start).
//
// Invariant: sub[start:i] consists of regexps that all begin
// with str as modified by strflags.
var ifirst *Regexp
if i < len(sub) {
ifirst = p.leadingRegexp(sub[i])
if first != nil && first.Equal(ifirst) {
continue
}
}
// Found end of a run with common leading regexp:
// sub[start:i] all begin with first but sub[i] does not.
//
// Factor out common regexp and append factored expression to out.
if i == start {
// Nothing to do - run of length 0.
} else if i == start+1 {
// Just one: don't bother factoring.
out = append(out, sub[start])
} else {
// Construct factored form: prefix(suffix1|suffix2|...)
prefix := first
for j := start; j < i; j++ {
reuse := j != start // prefix came from sub[start]
sub[j] = p.removeLeadingRegexp(sub[j], reuse)
}
suffix := p.collapse(sub[start:i], OpAlternate) // recurse
re := p.newRegexp(OpConcat)
re.Sub = append(re.Sub[:0], prefix, suffix)
out = append(out, re)
}
// Prepare for next iteration.
start = i
first = ifirst
}
sub = out
// Round 3: Collapse runs of single literals into character classes.
start = 0
out = sub[:0]
for i := 0; i <= len(sub); i++ {
// Invariant: the Regexps that were in sub[0:start] have been
// used or marked for reuse, and the slice space has been reused
// for out (len(out) <= start).
//
// Invariant: sub[start:i] consists of regexps that are either
// literal runes or character classes.
if i < len(sub) && isCharClass(sub[i]) {
continue
}
// sub[i] is not a char or char class;
// emit char class for sub[start:i]...
if i == start {
// Nothing to do - run of length 0.
} else if i == start+1 {
out = append(out, sub[start])
} else {
// Make new char class.
// Start with most complex regexp in sub[start].
max := start
for j := start + 1; j < i; j++ {
if sub[max].Op < sub[j].Op || sub[max].Op == sub[j].Op && len(sub[max].Rune) < len(sub[j].Rune) {
max = j
}
}
sub[start], sub[max] = sub[max], sub[start]
for j := start + 1; j < i; j++ {
mergeCharClass(sub[start], sub[j])
p.reuse(sub[j])
}
cleanAlt(sub[start])
out = append(out, sub[start])
}
// ... and then emit sub[i].
if i < len(sub) {
out = append(out, sub[i])
}
start = i + 1
}
sub = out
// Round 4: Collapse runs of empty matches into a single empty match.
start = 0
out = sub[:0]
for i := range sub {
if i+1 < len(sub) && sub[i].Op == OpEmptyMatch && sub[i+1].Op == OpEmptyMatch {
continue
}
out = append(out, sub[i])
}
sub = out
return sub
}
// leadingString returns the leading literal string that re begins with.
// The string refers to storage in re or its children.
func (p *parser) leadingString(re *Regexp) ([]int, Flags) {
if re.Op == OpConcat && len(re.Sub) > 0 {
re = re.Sub[0]
}
if re.Op != OpLiteral {
return nil, 0
}
return re.Rune, re.Flags & FoldCase
}
// removeLeadingString removes the first n leading runes
// from the beginning of re. It returns the replacement for re.
func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp {
if re.Op == OpConcat && len(re.Sub) > 0 {
// Removing a leading string in a concatenation
// might simplify the concatenation.
sub := re.Sub[0]
sub = p.removeLeadingString(sub, n)
re.Sub[0] = sub
if sub.Op == OpEmptyMatch {
p.reuse(sub)
switch len(re.Sub) {
case 0, 1:
// Impossible but handle.
re.Op = OpEmptyMatch
re.Sub = nil
case 2:
old := re
re = re.Sub[1]
p.reuse(old)
default:
copy(re.Sub, re.Sub[1:])
re.Sub = re.Sub[:len(re.Sub)-1]
}
}
return re
}
if re.Op == OpLiteral {
re.Rune = re.Rune[:copy(re.Rune, re.Rune[n:])]
if len(re.Rune) == 0 {
re.Op = OpEmptyMatch
}
}
return re
}
// leadingRegexp returns the leading regexp that re begins with.
// The regexp refers to storage in re or its children.
func (p *parser) leadingRegexp(re *Regexp) *Regexp {
if re.Op == OpEmptyMatch {
return nil
}
if re.Op == OpConcat && len(re.Sub) > 0 {
sub := re.Sub[0]
if sub.Op == OpEmptyMatch {
return nil
}
return sub
}
return re
}
// removeLeadingRegexp removes the leading regexp in re.
// It returns the replacement for re.
// If reuse is true, it passes the removed regexp (if no longer needed) to p.reuse.
func (p *parser) removeLeadingRegexp(re *Regexp, reuse bool) *Regexp {
if re.Op == OpConcat && len(re.Sub) > 0 {
if reuse {
p.reuse(re.Sub[0])
}
re.Sub = re.Sub[:copy(re.Sub, re.Sub[1:])]
switch len(re.Sub) {
case 0:
re.Op = OpEmptyMatch
re.Sub = nil
case 1:
old := re
re = re.Sub[0]
p.reuse(old)
}
return re
}
re.Op = OpEmptyMatch
return re
}
func literalRegexp(s string, flags Flags) *Regexp {
......@@ -752,6 +1038,36 @@ func (p *parser) parseVerticalBar() os.Error {
return nil
}
// mergeCharClass makes dst = dst|src.
// The caller must ensure that dst.Op >= src.Op,
// to reduce the amount of copying.
func mergeCharClass(dst, src *Regexp) {
switch dst.Op {
case OpAnyChar:
// src doesn't add anything.
case OpAnyCharNotNL:
// src might add \n
if matchRune(src, '\n') {
dst.Op = OpAnyChar
}
case OpCharClass:
// src is simpler, so either literal or char class
if src.Op == OpLiteral {
dst.Rune = appendRange(dst.Rune, src.Rune[0], src.Rune[0])
} else {
dst.Rune = appendClass(dst.Rune, src.Rune)
}
case OpLiteral:
// both literal
if src.Rune[0] == dst.Rune[0] {
break
}
dst.Op = OpCharClass
dst.Rune = append(dst.Rune, dst.Rune[0])
dst.Rune = appendRange(dst.Rune, src.Rune[0], src.Rune[0])
}
}
// If the top of the stack is an element followed by an opVerticalBar
// swapVerticalBar swaps the two and returns true.
// Otherwise it returns false.
......@@ -767,30 +1083,7 @@ func (p *parser) swapVerticalBar() bool {
re1, re3 = re3, re1
p.stack[n-3] = re3
}
switch re3.Op {
case OpAnyChar:
// re1 doesn't add anything.
case OpAnyCharNotNL:
// re1 might add \n
if matchRune(re1, '\n') {
re3.Op = OpAnyChar
}
case OpCharClass:
// re1 is simpler, so either literal or char class
if re1.Op == OpLiteral {
re3.Rune = appendRange(re3.Rune, re1.Rune[0], re1.Rune[0])
} else {
re3.Rune = appendClass(re3.Rune, re1.Rune)
}
case OpLiteral:
// both literal
if re1.Rune[0] == re3.Rune[0] {
break
}
re3.Op = OpCharClass
re3.Rune = append(re3.Rune, re3.Rune[0])
re3.Rune = appendRange(re3.Rune, re1.Rune[0], re1.Rune[0])
}
mergeCharClass(re3, re1)
p.reuse(re1)
p.stack = p.stack[:n-1]
return true
......@@ -1432,10 +1725,11 @@ func negateClass(r []int) []int {
}
nextLo = hi + 1
}
r = r[:w]
if nextLo <= unicode.MaxRune {
// It's possible for the negation to have one more
// range - this one - than the original class, so use append.
r = append(r[:w], nextLo, unicode.MaxRune)
r = append(r, nextLo, unicode.MaxRune)
}
return r
}
......
......@@ -39,8 +39,7 @@ var parseTests = []struct {
{`a{2,3}?`, `nrep{2,3 lit{a}}`},
{`a{2,}?`, `nrep{2,-1 lit{a}}`},
{``, `emp{}`},
// { `|`, `emp{}` }, // alt{emp{}emp{}} but got factored
{`|`, `alt{emp{}emp{}}`},
{`|`, `emp{}`}, // alt{emp{}emp{}} but got factored
{`|x|`, `alt{emp{}lit{x}emp{}}`},
{`.`, `dot{}`},
{`^`, `bol{}`},
......@@ -64,6 +63,9 @@ var parseTests = []struct {
{`\-`, `lit{-}`},
{`-`, `lit{-}`},
{`\_`, `lit{_}`},
{`abc`, `str{abc}`},
{`abc|def`, `alt{str{abc}str{def}}`},
{`abc|def|ghi`, `alt{str{abc}str{def}str{ghi}}`},
// Posix and Perl extensions
{`[[:lower:]]`, `cc{0x61-0x7a}`},
......@@ -156,6 +158,10 @@ var parseTests = []struct {
// Strings
{`abcde`, `str{abcde}`},
{`[Aa][Bb]cd`, `cat{strfold{AB}str{cd}}`},
// Factoring.
{`abc|abd|aef|bcx|bcy`, `alt{cat{lit{a}alt{cat{lit{b}cc{0x63-0x64}}str{ef}}}cat{str{bc}cc{0x78-0x79}}}`},
{`ax+y|ax+z|ay+w`, `cat{lit{a}alt{cat{plus{lit{x}}cc{0x79-0x7a}}cat{plus{lit{y}}lit{w}}}}`},
}
const testFlags = MatchNL | PerlX | UnicodeGroups
......
......@@ -60,6 +60,59 @@ const (
const opPseudo Op = 128 // where pseudo-ops start
// Equal returns true if x and y have identical structure.
func (x *Regexp) Equal(y *Regexp) bool {
if x == nil || y == nil {
return x == y
}
if x.Op != y.Op {
return false
}
switch x.Op {
case OpEndText:
// The parse flags remember whether this is \z or \Z.
if x.Flags&WasDollar != y.Flags&WasDollar {
return false
}
case OpLiteral, OpCharClass:
if len(x.Rune) != len(y.Rune) {
return false
}
for i, r := range x.Rune {
if r != y.Rune[i] {
return false
}
}
case OpAlternate, OpConcat:
if len(x.Sub) != len(y.Sub) {
return false
}
for i, sub := range x.Sub {
if !sub.Equal(y.Sub[i]) {
return false
}
}
case OpStar, OpPlus, OpQuest:
if x.Flags&NonGreedy != y.Flags&NonGreedy || !x.Sub[0].Equal(y.Sub[0]) {
return false
}
case OpRepeat:
if x.Flags&NonGreedy != y.Flags&NonGreedy || x.Min != y.Min || x.Max != y.Max || !x.Sub[0].Equal(y.Sub[0]) {
return false
}
case OpCapture:
if x.Cap != y.Cap || x.Name != y.Name || !x.Sub[0].Equal(y.Sub[0]) {
return false
}
}
return true
}
// writeRegexp writes the Perl syntax for the regular expression re to b.
func writeRegexp(b *bytes.Buffer, re *Regexp) {
switch re.Op {
......@@ -70,16 +123,24 @@ func writeRegexp(b *bytes.Buffer, re *Regexp) {
case OpEmptyMatch:
b.WriteString(`(?:)`)
case OpLiteral:
if re.Flags&FoldCase != 0 {
b.WriteString(`(?i:`)
}
for _, r := range re.Rune {
escape(b, r, false)
}
if re.Flags&FoldCase != 0 {
b.WriteString(`)`)
}
case OpCharClass:
if len(re.Rune)%2 != 0 {
b.WriteString(`[invalid char class]`)
break
}
b.WriteRune('[')
if len(re.Rune) > 0 && re.Rune[0] == 0 && re.Rune[len(re.Rune)-1] == unicode.MaxRune {
if len(re.Rune) == 0 {
b.WriteString(`^\x00-\x{10FFFF}`)
} else if re.Rune[0] == 0 && re.Rune[len(re.Rune)-1] == unicode.MaxRune {
// Contains 0 and MaxRune. Probably a negated class.
// Print the gaps.
b.WriteRune('^')
......@@ -126,7 +187,9 @@ func writeRegexp(b *bytes.Buffer, re *Regexp) {
} else {
b.WriteRune('(')
}
if re.Sub[0].Op != OpEmptyMatch {
writeRegexp(b, re.Sub[0])
}
b.WriteRune(')')
case OpStar, OpPlus, OpQuest, OpRepeat:
if sub := re.Sub[0]; sub.Op > OpCapture {
......@@ -205,6 +268,15 @@ func escape(b *bytes.Buffer, r int, force bool) {
case '\v':
b.WriteString(`\v`)
default:
if r < 0x100 {
b.WriteString(`\x`)
s := strconv.Itob(r, 16)
if len(s) == 1 {
b.WriteRune('0')
}
b.WriteString(s)
break
}
b.WriteString(`\x{`)
b.WriteString(strconv.Itob(r, 16))
b.WriteString(`}`)
......
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
// Simplify returns a regexp equivalent to re but without counted repetitions
// and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
// The resulting regexp will execute correctly but its string representation
// will not produce the same parse tree, because capturing parentheses
// may have been duplicated or removed. For example, the simplified form
// for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
// The returned regexp may share structure with or be the original.
func (re *Regexp) Simplify() *Regexp {
if re == nil {
return nil
}
switch re.Op {
case OpCapture, OpConcat, OpAlternate:
// Simplify children, building new Regexp if children change.
nre := re
for i, sub := range re.Sub {
nsub := sub.Simplify()
if nre == re && nsub != sub {
// Start a copy.
nre = new(Regexp)
*nre = *re
nre.Rune = nil
nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
}
if nre != re {
nre.Sub = append(nre.Sub, nsub)
}
}
return nre
case OpStar, OpPlus, OpQuest:
sub := re.Sub[0].Simplify()
return simplify1(re.Op, re.Flags, sub, re)
case OpRepeat:
// Special special case: x{0} matches the empty string
// and doesn't even need to consider x.
if re.Min == 0 && re.Max == 0 {
return &Regexp{Op: OpEmptyMatch}
}
// The fun begins.
sub := re.Sub[0].Simplify()
// x{n,} means at least n matches of x.
if re.Max == -1 {
// Special case: x{0,} is x*.
if re.Min == 0 {
return simplify1(OpStar, re.Flags, sub, nil)
}
// Special case: x{1,} is x+.
if re.Min == 1 {
return simplify1(OpPlus, re.Flags, sub, nil)
}
// General case: x{4,} is xxxx+.
nre := &Regexp{Op: OpConcat}
nre.Sub = nre.Sub0[:0]
for i := 0; i < re.Min-1; i++ {
nre.Sub = append(nre.Sub, sub)
}
nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
return nre
}
// Special case x{0} handled above.
// Special case: x{1} is just x.
if re.Min == 1 && re.Max == 1 {
return sub
}
// General case: x{n,m} means n copies of x and m copies of x?
// The machine will do less work if we nest the final m copies,
// so that x{2,5} = xx(x(x(x)?)?)?
// Build leading prefix: xx.
var prefix *Regexp
if re.Min > 0 {
prefix = &Regexp{Op: OpConcat}
prefix.Sub = prefix.Sub0[:0]
for i := 0; i < re.Min; i++ {
prefix.Sub = append(prefix.Sub, sub)
}
}
// Build and attach suffix: (x(x(x)?)?)?
if re.Max > re.Min {
suffix := simplify1(OpQuest, re.Flags, sub, nil)
for i := re.Min + 1; i < re.Max; i++ {
nre2 := &Regexp{Op: OpConcat}
nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
suffix = simplify1(OpQuest, re.Flags, nre2, nil)
}
if prefix == nil {
return suffix
}
prefix.Sub = append(prefix.Sub, suffix)
}
if prefix != nil {
return prefix
}
// Some degenerate case like min > max or min < max < 0.
// Handle as impossible match.
return &Regexp{Op: OpNoMatch}
}
return re
}
// simplify1 implements Simplify for the unary OpStar,
// OpPlus, and OpQuest operators. It returns the simple regexp
// equivalent to
//
// Regexp{Op: op, Flags: flags, Sub: {sub}}
//
// under the assumption that sub is already simple, and
// without first allocating that structure. If the regexp
// to be returned turns out to be equivalent to re, simplify1
// returns re instead.
//
// simplify1 is factored out of Simplify because the implementation
// for other operators generates these unary expressions.
// Letting them call simplify1 makes sure the expressions they
// generate are simple.
func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
// Special case: repeat the empty string as much as
// you want, but it's still the empty string.
if sub.Op == OpEmptyMatch {
return sub
}
// The operators are idempotent if the flags match.
if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
return sub
}
if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
return re
}
re = &Regexp{Op: op, Flags: flags}
re.Sub = append(re.Sub0[:0], sub)
return re
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import "testing"
var simplifyTests = []struct {
Regexp string
Simple string
}{
// Already-simple constructs
{`a`, `a`},
{`ab`, `ab`},
{`a|b`, `[a-b]`},
{`ab|cd`, `ab|cd`},
{`(ab)*`, `(ab)*`},
{`(ab)+`, `(ab)+`},
{`(ab)?`, `(ab)?`},
{`.`, `.`},
{`^`, `^`},
{`$`, `$`},
{`[ac]`, `[ac]`},
{`[^ac]`, `[^ac]`},
// Posix character classes
{`[[:alnum:]]`, `[0-9A-Za-z]`},
{`[[:alpha:]]`, `[A-Za-z]`},
{`[[:blank:]]`, `[\t ]`},
{`[[:cntrl:]]`, `[\x00-\x1f\x7f]`},
{`[[:digit:]]`, `[0-9]`},
{`[[:graph:]]`, `[!-~]`},
{`[[:lower:]]`, `[a-z]`},
{`[[:print:]]`, `[ -~]`},
{`[[:punct:]]`, "[!-/:-@\\[-`\\{-~]"},
{`[[:space:]]`, `[\t-\r ]`},
{`[[:upper:]]`, `[A-Z]`},
{`[[:xdigit:]]`, `[0-9A-Fa-f]`},
// Perl character classes
{`\d`, `[0-9]`},
{`\s`, `[\t-\n\f-\r ]`},
{`\w`, `[0-9A-Z_a-z]`},
{`\D`, `[^0-9]`},
{`\S`, `[^\t-\n\f-\r ]`},
{`\W`, `[^0-9A-Z_a-z]`},
{`[\d]`, `[0-9]`},
{`[\s]`, `[\t-\n\f-\r ]`},
{`[\w]`, `[0-9A-Z_a-z]`},
{`[\D]`, `[^0-9]`},
{`[\S]`, `[^\t-\n\f-\r ]`},
{`[\W]`, `[^0-9A-Z_a-z]`},
// Posix repetitions
{`a{1}`, `a`},
{`a{2}`, `aa`},
{`a{5}`, `aaaaa`},
{`a{0,1}`, `a?`},
// The next three are illegible because Simplify inserts (?:)
// parens instead of () parens to avoid creating extra
// captured subexpressions. The comments show a version with fewer parens.
{`(a){0,2}`, `(?:(a)(a)?)?`}, // (aa?)?
{`(a){0,4}`, `(?:(a)(?:(a)(?:(a)(a)?)?)?)?`}, // (a(a(aa?)?)?)?
{`(a){2,6}`, `(a)(a)(?:(a)(?:(a)(?:(a)(a)?)?)?)?`}, // aa(a(a(aa?)?)?)?
{`a{0,2}`, `(?:aa?)?`}, // (aa?)?
{`a{0,4}`, `(?:a(?:a(?:aa?)?)?)?`}, // (a(a(aa?)?)?)?
{`a{2,6}`, `aa(?:a(?:a(?:aa?)?)?)?`}, // aa(a(a(aa?)?)?)?
{`a{0,}`, `a*`},
{`a{1,}`, `a+`},
{`a{2,}`, `aa+`},
{`a{5,}`, `aaaaa+`},
// Test that operators simplify their arguments.
{`(?:a{1,}){1,}`, `a+`},
{`(a{1,}b{1,})`, `(a+b+)`},
{`a{1,}|b{1,}`, `a+|b+`},
{`(?:a{1,})*`, `(?:a+)*`},
{`(?:a{1,})+`, `a+`},
{`(?:a{1,})?`, `(?:a+)?`},
{``, `(?:)`},
{`a{0}`, `(?:)`},
// Character class simplification
{`[ab]`, `[a-b]`},
{`[a-za-za-z]`, `[a-z]`},
{`[A-Za-zA-Za-z]`, `[A-Za-z]`},
{`[ABCDEFGH]`, `[A-H]`},
{`[AB-CD-EF-GH]`, `[A-H]`},
{`[W-ZP-XE-R]`, `[E-Z]`},
{`[a-ee-gg-m]`, `[a-m]`},
{`[a-ea-ha-m]`, `[a-m]`},
{`[a-ma-ha-e]`, `[a-m]`},
{`[a-zA-Z0-9 -~]`, `[ -~]`},
// Empty character classes
{`[^[:cntrl:][:^cntrl:]]`, `[^\x00-\x{10FFFF}]`},
// Full character classes
{`[[:cntrl:][:^cntrl:]]`, `.`},
// Unicode case folding.
{`(?i)A`, `(?i:A)`},
{`(?i)a`, `(?i:a)`},
{`(?i)[A]`, `(?i:A)`},
{`(?i)[a]`, `(?i:A)`},
{`(?i)K`, `(?i:K)`},
{`(?i)k`, `(?i:k)`},
{`(?i)\x{212a}`, "(?i:\u212A)"},
{`(?i)[K]`, "[Kk\u212A]"},
{`(?i)[k]`, "[Kk\u212A]"},
{`(?i)[\x{212a}]`, "[Kk\u212A]"},
{`(?i)[a-z]`, "[A-Za-z\u017F\u212A]"},
{`(?i)[\x00-\x{FFFD}]`, "[\\x00-\uFFFD]"},
{`(?i)[\x00-\x{10FFFF}]`, `.`},
// Empty string as a regular expression.
// The empty string must be preserved inside parens in order
// to make submatches work right, so these tests are less
// interesting than they might otherwise be. String inserts
// explicit (?:) in place of non-parenthesized empty strings,
// to make them easier to spot for other parsers.
{`(a|b|)`, `([a-b]|(?:))`},
{`(|)`, `()`},
{`a()`, `a()`},
{`(()|())`, `(()|())`},
{`(a|)`, `(a|(?:))`},
{`ab()cd()`, `ab()cd()`},
{`()`, `()`},
{`()*`, `()*`},
{`()+`, `()+`},
{`()?`, `()?`},
{`(){0}`, `(?:)`},
{`(){1}`, `()`},
{`(){1,}`, `()+`},
{`(){0,2}`, `(?:()()?)?`},
}
func TestSimplify(t *testing.T) {
for _, tt := range simplifyTests {
re, err := Parse(tt.Regexp, MatchNL|Perl&^OneLine)
if err != nil {
t.Errorf("Parse(%#q) = error %v", tt.Regexp, err)
continue
}
s := re.Simplify().String()
if s != tt.Simple {
t.Errorf("Simplify(%#q) = %#q, want %#q", tt.Regexp, s, tt.Simple)
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment