Commit d98553a7 authored by Russ Cox's avatar Russ Cox

[dev.cc] runtime: convert panic and stack code from C to Go

The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=r
R=r, dave
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/166520043
parent 0d49f7b5
......@@ -54,6 +54,11 @@ func throwinit() {
// The compiler turns a defer statement into a call to this.
//go:nosplit
func deferproc(siz int32, fn *funcval) { // arguments of fn follow fn
if getg().m.curg != getg() {
// go code on the m stack can't defer
gothrow("defer on m")
}
// the arguments of fn are in a perilous state. The stack map
// for deferproc does not describe them. So we can't let garbage
// collection or stack copying trigger until we've copied them out
......@@ -64,20 +69,18 @@ func deferproc(siz int32, fn *funcval) { // arguments of fn follow fn
if GOARCH == "arm" {
argp += ptrSize // skip caller's saved link register
}
mp := acquirem()
mp.scalararg[0] = uintptr(siz)
mp.ptrarg[0] = unsafe.Pointer(fn)
mp.scalararg[1] = argp
mp.scalararg[2] = getcallerpc(unsafe.Pointer(&siz))
if mp.curg != getg() {
// go code on the m stack can't defer
gothrow("defer on m")
}
onM(deferproc_m)
callerpc := getcallerpc(unsafe.Pointer(&siz))
releasem(mp)
onM(func() {
d := newdefer(siz)
if d._panic != nil {
gothrow("deferproc: d.panic != nil after newdefer")
}
d.fn = fn
d.pc = callerpc
d.argp = argp
memmove(add(unsafe.Pointer(d), unsafe.Sizeof(*d)), unsafe.Pointer(argp), uintptr(siz))
})
// deferproc returns 0 normally.
// a deferred func that stops a panic
......@@ -298,8 +301,6 @@ func Goexit() {
goexit()
}
func canpanic(*g) bool
// Print all currently active panics. Used when crashing.
func printpanics(p *_panic) {
if p.link != nil {
......@@ -318,6 +319,9 @@ func printpanics(p *_panic) {
func gopanic(e interface{}) {
gp := getg()
if gp.m.curg != gp {
print("panic: ")
printany(e)
print("\n")
gothrow("panic on m stack")
}
......@@ -414,7 +418,7 @@ func gopanic(e interface{}) {
// Pass information about recovering frame to recovery.
gp.sigcode0 = uintptr(argp)
gp.sigcode1 = pc
mcall(recovery_m)
mcall(recovery)
gothrow("recovery failed") // mcall should not return
}
}
......
......@@ -2,63 +2,30 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "stack.h"
#include "malloc.h"
#include "textflag.h"
package runtime
import "unsafe"
// Code related to defer, panic and recover.
// TODO: Merge into panic.go.
// TODO: remove once code is moved to Go
extern Defer* runtime·newdefer(int32 siz);
extern runtime·freedefer(Defer *d);
uint32 runtime·panicking;
static Mutex paniclk;
void
runtime·deferproc_m(void)
{
int32 siz;
FuncVal *fn;
uintptr argp;
uintptr callerpc;
Defer *d;
siz = g->m->scalararg[0];
fn = g->m->ptrarg[0];
argp = g->m->scalararg[1];
callerpc = g->m->scalararg[2];
g->m->ptrarg[0] = nil;
g->m->scalararg[1] = 0;
d = runtime·newdefer(siz);
if(d->panic != nil)
runtime·throw("deferproc: d->panic != nil after newdefer");
d->fn = fn;
d->pc = callerpc;
d->argp = argp;
runtime·memmove(d+1, (void*)argp, siz);
}
//uint32 runtime·panicking;
var paniclk mutex
const hasLinkRegister = thechar == '5'
// Unwind the stack after a deferred function calls recover
// after a panic. Then arrange to continue running as though
// the caller of the deferred function returned normally.
void
runtime·recovery_m(G *gp)
{
void *argp;
uintptr pc;
func recovery(gp *g) {
// Info about defer passed in G struct.
argp = (void*)gp->sigcode0;
pc = (uintptr)gp->sigcode1;
argp := (unsafe.Pointer)(gp.sigcode0)
pc := uintptr(gp.sigcode1)
// d's arguments need to be in the stack.
if(argp != nil && ((uintptr)argp < gp->stack.lo || gp->stack.hi < (uintptr)argp)) {
runtime·printf("recover: %p not in [%p, %p]\n", argp, gp->stack.lo, gp->stack.hi);
runtime·throw("bad recovery");
if argp != nil && (uintptr(argp) < gp.stack.lo || gp.stack.hi < uintptr(argp)) {
print("recover: ", argp, " not in [", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n")
gothrow("bad recovery")
}
// Make the deferproc for this d return again,
......@@ -70,131 +37,132 @@ runtime·recovery_m(G *gp)
// (The pc we're returning to does pop pop
// before it tests the return value.)
// On the arm there are 2 saved LRs mixed in too.
if(thechar == '5')
gp->sched.sp = (uintptr)argp - 4*sizeof(uintptr);
else
gp->sched.sp = (uintptr)argp - 2*sizeof(uintptr);
gp->sched.pc = pc;
gp->sched.lr = 0;
gp->sched.ret = 1;
runtime·gogo(&gp->sched);
if hasLinkRegister {
gp.sched.sp = uintptr(argp) - 4*ptrSize
} else {
gp.sched.sp = uintptr(argp) - 2*ptrSize
}
gp.sched.pc = pc
gp.sched.lr = 0
gp.sched.ret = 1
gogo(&gp.sched)
}
void
runtime·startpanic_m(void)
{
if(runtime·mheap.cachealloc.size == 0) { // very early
runtime·printf("runtime: panic before malloc heap initialized\n");
g->m->mallocing = 1; // tell rest of panic not to try to malloc
} else if(g->m->mcache == nil) // can happen if called from signal handler or throw
g->m->mcache = runtime·allocmcache();
switch(g->m->dying) {
func startpanic_m() {
_g_ := getg()
if mheap_.cachealloc.size == 0 { // very early
print("runtime: panic before malloc heap initialized\n")
_g_.m.mallocing = 1 // tell rest of panic not to try to malloc
} else if _g_.m.mcache == nil { // can happen if called from signal handler or throw
_g_.m.mcache = allocmcache()
}
switch _g_.m.dying {
case 0:
g->m->dying = 1;
if(g != nil) {
g->writebuf.array = nil;
g->writebuf.len = 0;
g->writebuf.cap = 0;
_g_.m.dying = 1
if _g_ != nil {
_g_.writebuf = nil
}
xadd(&panicking, 1)
lock(&paniclk)
if debug.schedtrace > 0 || debug.scheddetail > 0 {
schedtrace(true)
}
runtime·xadd(&runtime·panicking, 1);
runtime·lock(&paniclk);
if(runtime·debug.schedtrace > 0 || runtime·debug.scheddetail > 0)
runtime·schedtrace(true);
runtime·freezetheworld();
return;
freezetheworld()
return
case 1:
// Something failed while panicing, probably the print of the
// argument to panic(). Just print a stack trace and exit.
g->m->dying = 2;
runtime·printf("panic during panic\n");
runtime·dopanic(0);
runtime·exit(3);
_g_.m.dying = 2
print("panic during panic\n")
dopanic(0)
exit(3)
fallthrough
case 2:
// This is a genuine bug in the runtime, we couldn't even
// print the stack trace successfully.
g->m->dying = 3;
runtime·printf("stack trace unavailable\n");
runtime·exit(4);
_g_.m.dying = 3
print("stack trace unavailable\n")
exit(4)
fallthrough
default:
// Can't even print! Just exit.
runtime·exit(5);
exit(5)
}
}
void
runtime·dopanic_m(void)
{
G *gp;
uintptr sp, pc;
static bool didothers;
bool crash;
int32 t;
gp = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
pc = g->m->scalararg[0];
sp = g->m->scalararg[1];
g->m->scalararg[1] = 0;
if(gp->sig != 0)
runtime·printf("[signal %x code=%p addr=%p pc=%p]\n",
gp->sig, gp->sigcode0, gp->sigcode1, gp->sigpc);
if((t = runtime·gotraceback(&crash)) > 0){
if(gp != gp->m->g0) {
runtime·printf("\n");
runtime·goroutineheader(gp);
runtime·traceback(pc, sp, 0, gp);
} else if(t >= 2 || g->m->throwing > 0) {
runtime·printf("\nruntime stack:\n");
runtime·traceback(pc, sp, 0, gp);
var didothers bool
var deadlock mutex
func dopanic_m() {
_g_ := getg()
gp := (*g)(_g_.m.ptrarg[0])
_g_.m.ptrarg[0] = nil
pc := uintptr(_g_.m.scalararg[0])
sp := uintptr(_g_.m.scalararg[1])
_g_.m.scalararg[1] = 0
if gp.sig != 0 {
print("[signal ", hex(gp.sig), " code=", hex(gp.sigcode0), " addr=", hex(gp.sigcode1), " pc=", hex(gp.sigpc), "]\n")
}
var docrash bool
if t := gotraceback(&docrash); t > 0 {
if gp != gp.m.g0 {
print("\n")
goroutineheader(gp)
traceback(pc, sp, 0, gp)
} else if t >= 2 || _g_.m.throwing > 0 {
print("\nruntime stack:\n")
traceback(pc, sp, 0, gp)
}
if(!didothers) {
didothers = true;
runtime·tracebackothers(gp);
if !didothers {
didothers = true
tracebackothers(gp)
}
}
runtime·unlock(&paniclk);
if(runtime·xadd(&runtime·panicking, -1) != 0) {
unlock(&paniclk)
if xadd(&panicking, -1) != 0 {
// Some other m is panicking too.
// Let it print what it needs to print.
// Wait forever without chewing up cpu.
// It will exit when it's done.
static Mutex deadlock;
runtime·lock(&deadlock);
runtime·lock(&deadlock);
lock(&deadlock)
lock(&deadlock)
}
if(crash)
runtime·crash();
runtime·exit(2);
}
if docrash {
crash()
}
#pragma textflag NOSPLIT
bool
runtime·canpanic(G *gp)
{
M *m;
uint32 status;
exit(2)
}
//go:nosplit
func canpanic(gp *g) bool {
// Note that g is m->gsignal, different from gp.
// Note also that g->m can change at preemption, so m can go stale
// if this function ever makes a function call.
m = g->m;
_g_ := getg()
_m_ := _g_.m
// Is it okay for gp to panic instead of crashing the program?
// Yes, as long as it is running Go code, not runtime code,
// and not stuck in a system call.
if(gp == nil || gp != m->curg)
return false;
if(m->locks-m->softfloat != 0 || m->mallocing != 0 || m->throwing != 0 || m->gcing != 0 || m->dying != 0)
return false;
status = runtime·readgstatus(gp);
if((status&~Gscan) != Grunning || gp->syscallsp != 0)
return false;
#ifdef GOOS_windows
if(m->libcallsp != 0)
return false;
#endif
return true;
if gp == nil || gp != _m_.curg {
return false
}
if _m_.locks-_m_.softfloat != 0 || _m_.mallocing != 0 || _m_.throwing != 0 || _m_.gcing != 0 || _m_.dying != 0 {
return false
}
status := readgstatus(gp)
if status&^_Gscan != _Grunning || gp.syscallsp != 0 {
return false
}
if GOOS == "windows" && _m_.libcallsp != 0 {
return false
}
return true
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "stack.h"
#include "funcdata.h"
#include "typekind.h"
#include "type.h"
#include "race.h"
#include "mgc0.h"
#include "textflag.h"
enum
{
// StackDebug == 0: no logging
// == 1: logging of per-stack operations
// == 2: logging of per-frame operations
// == 3: logging of per-word updates
// == 4: logging of per-word reads
StackDebug = 0,
StackFromSystem = 0, // allocate stacks from system memory instead of the heap
StackFaultOnFree = 0, // old stacks are mapped noaccess to detect use after free
StackPoisonCopy = 0, // fill stack that should not be accessed with garbage, to detect bad dereferences during copy
StackCache = 1,
};
// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
// order = log_2(size/FixedStack)
// There is a free list for each order.
MSpan runtime·stackpool[NumStackOrders];
Mutex runtime·stackpoolmu;
// TODO: one lock per order?
static Stack stackfreequeue;
void
runtime·stackinit(void)
{
int32 i;
if((StackCacheSize & PageMask) != 0)
runtime·throw("cache size must be a multiple of page size");
for(i = 0; i < NumStackOrders; i++)
runtime·MSpanList_Init(&runtime·stackpool[i]);
}
// Allocates a stack from the free pool. Must be called with
// stackpoolmu held.
static MLink*
poolalloc(uint8 order)
{
MSpan *list;
MSpan *s;
MLink *x;
uintptr i;
list = &runtime·stackpool[order];
s = list->next;
if(s == list) {
// no free stacks. Allocate another span worth.
s = runtime·MHeap_AllocStack(&runtime·mheap, StackCacheSize >> PageShift);
if(s == nil)
runtime·throw("out of memory");
if(s->ref != 0)
runtime·throw("bad ref");
if(s->freelist != nil)
runtime·throw("bad freelist");
for(i = 0; i < StackCacheSize; i += FixedStack << order) {
x = (MLink*)((s->start << PageShift) + i);
x->next = s->freelist;
s->freelist = x;
}
runtime·MSpanList_Insert(list, s);
}
x = s->freelist;
if(x == nil)
runtime·throw("span has no free stacks");
s->freelist = x->next;
s->ref++;
if(s->freelist == nil) {
// all stacks in s are allocated.
runtime·MSpanList_Remove(s);
}
return x;
}
// Adds stack x to the free pool. Must be called with stackpoolmu held.
static void
poolfree(MLink *x, uint8 order)
{
MSpan *s;
s = runtime·MHeap_Lookup(&runtime·mheap, x);
if(s->state != MSpanStack)
runtime·throw("freeing stack not in a stack span");
if(s->freelist == nil) {
// s will now have a free stack
runtime·MSpanList_Insert(&runtime·stackpool[order], s);
}
x->next = s->freelist;
s->freelist = x;
s->ref--;
if(s->ref == 0) {
// span is completely free - return to heap
runtime·MSpanList_Remove(s);
s->freelist = nil;
runtime·MHeap_FreeStack(&runtime·mheap, s);
}
}
// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
static void
stackcacherefill(MCache *c, uint8 order)
{
MLink *x, *list;
uintptr size;
if(StackDebug >= 1)
runtime·printf("stackcacherefill order=%d\n", order);
// Grab some stacks from the global cache.
// Grab half of the allowed capacity (to prevent thrashing).
list = nil;
size = 0;
runtime·lock(&runtime·stackpoolmu);
while(size < StackCacheSize/2) {
x = poolalloc(order);
x->next = list;
list = x;
size += FixedStack << order;
}
runtime·unlock(&runtime·stackpoolmu);
c->stackcache[order].list = list;
c->stackcache[order].size = size;
}
static void
stackcacherelease(MCache *c, uint8 order)
{
MLink *x, *y;
uintptr size;
if(StackDebug >= 1)
runtime·printf("stackcacherelease order=%d\n", order);
x = c->stackcache[order].list;
size = c->stackcache[order].size;
runtime·lock(&runtime·stackpoolmu);
while(size > StackCacheSize/2) {
y = x->next;
poolfree(x, order);
x = y;
size -= FixedStack << order;
}
runtime·unlock(&runtime·stackpoolmu);
c->stackcache[order].list = x;
c->stackcache[order].size = size;
}
void
runtime·stackcache_clear(MCache *c)
{
uint8 order;
MLink *x, *y;
if(StackDebug >= 1)
runtime·printf("stackcache clear\n");
runtime·lock(&runtime·stackpoolmu);
for(order = 0; order < NumStackOrders; order++) {
x = c->stackcache[order].list;
while(x != nil) {
y = x->next;
poolfree(x, order);
x = y;
}
c->stackcache[order].list = nil;
c->stackcache[order].size = 0;
}
runtime·unlock(&runtime·stackpoolmu);
}
Stack
runtime·stackalloc(uint32 n)
{
uint8 order;
uint32 n2;
void *v;
MLink *x;
MSpan *s;
MCache *c;
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
if(g != g->m->g0)
runtime·throw("stackalloc not on scheduler stack");
if((n & (n-1)) != 0)
runtime·throw("stack size not a power of 2");
if(StackDebug >= 1)
runtime·printf("stackalloc %d\n", n);
if(runtime·debug.efence || StackFromSystem) {
v = runtime·sysAlloc(ROUND(n, PageSize), &mstats.stacks_sys);
if(v == nil)
runtime·throw("out of memory (stackalloc)");
return (Stack){(uintptr)v, (uintptr)v+n};
}
// Small stacks are allocated with a fixed-size free-list allocator.
// If we need a stack of a bigger size, we fall back on allocating
// a dedicated span.
if(StackCache && n < FixedStack << NumStackOrders && n < StackCacheSize) {
order = 0;
n2 = n;
while(n2 > FixedStack) {
order++;
n2 >>= 1;
}
c = g->m->mcache;
if(c == nil || g->m->gcing || g->m->helpgc) {
// c == nil can happen in the guts of exitsyscall or
// procresize. Just get a stack from the global pool.
// Also don't touch stackcache during gc
// as it's flushed concurrently.
runtime·lock(&runtime·stackpoolmu);
x = poolalloc(order);
runtime·unlock(&runtime·stackpoolmu);
} else {
x = c->stackcache[order].list;
if(x == nil) {
stackcacherefill(c, order);
x = c->stackcache[order].list;
}
c->stackcache[order].list = x->next;
c->stackcache[order].size -= n;
}
v = (byte*)x;
} else {
s = runtime·MHeap_AllocStack(&runtime·mheap, ROUND(n, PageSize) >> PageShift);
if(s == nil)
runtime·throw("out of memory");
v = (byte*)(s->start<<PageShift);
}
if(raceenabled)
runtime·racemalloc(v, n);
if(StackDebug >= 1)
runtime·printf(" allocated %p\n", v);
return (Stack){(uintptr)v, (uintptr)v+n};
}
void
runtime·stackfree(Stack stk)
{
uint8 order;
uintptr n, n2;
MSpan *s;
MLink *x;
MCache *c;
void *v;
n = stk.hi - stk.lo;
v = (void*)stk.lo;
if(n & (n-1))
runtime·throw("stack not a power of 2");
if(StackDebug >= 1) {
runtime·printf("stackfree %p %d\n", v, (int32)n);
runtime·memclr(v, n); // for testing, clobber stack data
}
if(runtime·debug.efence || StackFromSystem) {
if(runtime·debug.efence || StackFaultOnFree)
runtime·SysFault(v, n);
else
runtime·SysFree(v, n, &mstats.stacks_sys);
return;
}
if(StackCache && n < FixedStack << NumStackOrders && n < StackCacheSize) {
order = 0;
n2 = n;
while(n2 > FixedStack) {
order++;
n2 >>= 1;
}
x = (MLink*)v;
c = g->m->mcache;
if(c == nil || g->m->gcing || g->m->helpgc) {
runtime·lock(&runtime·stackpoolmu);
poolfree(x, order);
runtime·unlock(&runtime·stackpoolmu);
} else {
if(c->stackcache[order].size >= StackCacheSize)
stackcacherelease(c, order);
x->next = c->stackcache[order].list;
c->stackcache[order].list = x;
c->stackcache[order].size += n;
}
} else {
s = runtime·MHeap_Lookup(&runtime·mheap, v);
if(s->state != MSpanStack) {
runtime·printf("%p %p\n", s->start<<PageShift, v);
runtime·throw("bad span state");
}
runtime·MHeap_FreeStack(&runtime·mheap, s);
}
}
uintptr runtime·maxstacksize = 1<<20; // enough until runtime.main sets it for real
static uint8*
mapnames[] = {
(uint8*)"---",
(uint8*)"scalar",
(uint8*)"ptr",
(uint8*)"multi",
};
// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | return address |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+
// | return address |
// +------------------+ <- frame->sp
void runtime·main(void);
void runtime·switchtoM(void(*)(void));
typedef struct AdjustInfo AdjustInfo;
struct AdjustInfo {
Stack old;
uintptr delta; // ptr distance from old to new stack (newbase - oldbase)
};
// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
static void
adjustpointer(AdjustInfo *adjinfo, void *vpp)
{
byte **pp, *p;
pp = vpp;
p = *pp;
if(StackDebug >= 4)
runtime·printf(" %p:%p\n", pp, p);
if(adjinfo->old.lo <= (uintptr)p && (uintptr)p < adjinfo->old.hi) {
*pp = p + adjinfo->delta;
if(StackDebug >= 3)
runtime·printf(" adjust ptr %p: %p -> %p\n", pp, p, *pp);
}
}
// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
static void
adjustpointers(byte **scanp, BitVector *bv, AdjustInfo *adjinfo, Func *f)
{
uintptr delta;
int32 num, i;
byte *p, *minp, *maxp;
Type *t;
Itab *tab;
minp = (byte*)adjinfo->old.lo;
maxp = (byte*)adjinfo->old.hi;
delta = adjinfo->delta;
num = bv->n / BitsPerPointer;
for(i = 0; i < num; i++) {
if(StackDebug >= 4)
runtime·printf(" %p:%s:%p\n", &scanp[i], mapnames[bv->bytedata[i / (8 / BitsPerPointer)] >> (i * BitsPerPointer & 7) & 3], scanp[i]);
switch(bv->bytedata[i / (8 / BitsPerPointer)] >> (i * BitsPerPointer & 7) & 3) {
case BitsDead:
if(runtime·debug.gcdead)
scanp[i] = (byte*)PoisonStack;
break;
case BitsScalar:
break;
case BitsPointer:
p = scanp[i];
if(f != nil && (byte*)0 < p && (p < (byte*)PageSize && runtime·invalidptr || (uintptr)p == PoisonGC || (uintptr)p == PoisonStack)) {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
g->m->traceback = 2;
runtime·printf("runtime: bad pointer in frame %s at %p: %p\n", runtime·funcname(f), &scanp[i], p);
runtime·throw("invalid stack pointer");
}
if(minp <= p && p < maxp) {
if(StackDebug >= 3)
runtime·printf("adjust ptr %p %s\n", p, runtime·funcname(f));
scanp[i] = p + delta;
}
break;
case BitsMultiWord:
switch(bv->bytedata[(i+1) / (8 / BitsPerPointer)] >> ((i+1) * BitsPerPointer & 7) & 3) {
default:
runtime·throw("unexpected garbage collection bits");
case BitsEface:
t = (Type*)scanp[i];
if(t != nil && ((t->kind & KindDirectIface) == 0 || (t->kind & KindNoPointers) == 0)) {
p = scanp[i+1];
if(minp <= p && p < maxp) {
if(StackDebug >= 3)
runtime·printf("adjust eface %p\n", p);
if(t->size > PtrSize) // currently we always allocate such objects on the heap
runtime·throw("large interface value found on stack");
scanp[i+1] = p + delta;
}
}
i++;
break;
case BitsIface:
tab = (Itab*)scanp[i];
if(tab != nil) {
t = tab->type;
//runtime·printf(" type=%p\n", t);
if((t->kind & KindDirectIface) == 0 || (t->kind & KindNoPointers) == 0) {
p = scanp[i+1];
if(minp <= p && p < maxp) {
if(StackDebug >= 3)
runtime·printf("adjust iface %p\n", p);
if(t->size > PtrSize) // currently we always allocate such objects on the heap
runtime·throw("large interface value found on stack");
scanp[i+1] = p + delta;
}
}
}
i++;
break;
}
break;
}
}
}
// Note: the argument/return area is adjusted by the callee.
static bool
adjustframe(Stkframe *frame, void *arg)
{
AdjustInfo *adjinfo;
Func *f;
StackMap *stackmap;
int32 pcdata;
BitVector bv;
uintptr targetpc, size, minsize;
adjinfo = arg;
targetpc = frame->continpc;
if(targetpc == 0) {
// Frame is dead.
return true;
}
f = frame->fn;
if(StackDebug >= 2)
runtime·printf(" adjusting %s frame=[%p,%p] pc=%p continpc=%p\n", runtime·funcname(f), frame->sp, frame->fp, frame->pc, frame->continpc);
if(f->entry == (uintptr)runtime·switchtoM) {
// A special routine at the bottom of stack of a goroutine that does an onM call.
// We will allow it to be copied even though we don't
// have full GC info for it (because it is written in asm).
return true;
}
if(targetpc != f->entry)
targetpc--;
pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc);
if(pcdata == -1)
pcdata = 0; // in prologue
// Adjust local variables if stack frame has been allocated.
size = frame->varp - frame->sp;
if(thechar != '6' && thechar != '8')
minsize = sizeof(uintptr);
else
minsize = 0;
if(size > minsize) {
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil || stackmap->n <= 0) {
runtime·printf("runtime: frame %s untyped locals %p+%p\n", runtime·funcname(f), (byte*)(frame->varp-size), size);
runtime·throw("missing stackmap");
}
// Locals bitmap information, scan just the pointers in locals.
if(pcdata < 0 || pcdata >= stackmap->n) {
// don't know where we are
runtime·printf("runtime: pcdata is %d and %d locals stack map entries for %s (targetpc=%p)\n",
pcdata, stackmap->n, runtime·funcname(f), targetpc);
runtime·throw("bad symbol table");
}
bv = runtime·stackmapdata(stackmap, pcdata);
size = (bv.n * PtrSize) / BitsPerPointer;
if(StackDebug >= 3)
runtime·printf(" locals\n");
adjustpointers((byte**)(frame->varp - size), &bv, adjinfo, f);
}
// Adjust arguments.
if(frame->arglen > 0) {
if(frame->argmap != nil) {
bv = *frame->argmap;
} else {
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap == nil || stackmap->n <= 0) {
runtime·printf("runtime: frame %s untyped args %p+%p\n", runtime·funcname(f), frame->argp, (uintptr)frame->arglen);
runtime·throw("missing stackmap");
}
if(pcdata < 0 || pcdata >= stackmap->n) {
// don't know where we are
runtime·printf("runtime: pcdata is %d and %d args stack map entries for %s (targetpc=%p)\n",
pcdata, stackmap->n, runtime·funcname(f), targetpc);
runtime·throw("bad symbol table");
}
bv = runtime·stackmapdata(stackmap, pcdata);
}
if(StackDebug >= 3)
runtime·printf(" args\n");
adjustpointers((byte**)frame->argp, &bv, adjinfo, nil);
}
return true;
}
static void
adjustctxt(G *gp, AdjustInfo *adjinfo)
{
adjustpointer(adjinfo, &gp->sched.ctxt);
}
static void
adjustdefers(G *gp, AdjustInfo *adjinfo)
{
Defer *d;
bool (*cb)(Stkframe*, void*);
// Adjust defer argument blocks the same way we adjust active stack frames.
cb = adjustframe;
runtime·tracebackdefers(gp, &cb, adjinfo);
// Adjust pointers in the Defer structs.
// Defer structs themselves are never on the stack.
for(d = gp->defer; d != nil; d = d->link) {
adjustpointer(adjinfo, &d->fn);
adjustpointer(adjinfo, &d->argp);
adjustpointer(adjinfo, &d->panic);
}
}
static void
adjustpanics(G *gp, AdjustInfo *adjinfo)
{
// Panics are on stack and already adjusted.
// Update pointer to head of list in G.
adjustpointer(adjinfo, &gp->panic);
}
static void
adjustsudogs(G *gp, AdjustInfo *adjinfo)
{
SudoG *s;
// the data elements pointed to by a SudoG structure
// might be in the stack.
for(s = gp->waiting; s != nil; s = s->waitlink) {
adjustpointer(adjinfo, &s->elem);
adjustpointer(adjinfo, &s->selectdone);
}
}
// Copies gp's stack to a new stack of a different size.
static void
copystack(G *gp, uintptr newsize)
{
Stack old, new;
uintptr used;
AdjustInfo adjinfo;
uint32 oldstatus;
bool (*cb)(Stkframe*, void*);
byte *p, *ep;
if(gp->syscallsp != 0)
runtime·throw("stack growth not allowed in system call");
old = gp->stack;
if(old.lo == 0)
runtime·throw("nil stackbase");
used = old.hi - gp->sched.sp;
// allocate new stack
new = runtime·stackalloc(newsize);
if(StackPoisonCopy) {
p = (byte*)new.lo;
ep = (byte*)new.hi;
while(p < ep)
*p++ = 0xfd;
}
if(StackDebug >= 1)
runtime·printf("copystack gp=%p [%p %p %p]/%d -> [%p %p %p]/%d\n", gp, old.lo, old.hi-used, old.hi, (int32)(old.hi-old.lo), new.lo, new.hi-used, new.hi, (int32)newsize);
// adjust pointers in the to-be-copied frames
adjinfo.old = old;
adjinfo.delta = new.hi - old.hi;
cb = adjustframe;
runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, &cb, &adjinfo, 0);
// adjust other miscellaneous things that have pointers into stacks.
adjustctxt(gp, &adjinfo);
adjustdefers(gp, &adjinfo);
adjustpanics(gp, &adjinfo);
adjustsudogs(gp, &adjinfo);
// copy the stack to the new location
if(StackPoisonCopy) {
p = (byte*)new.lo;
ep = (byte*)new.hi;
while(p < ep)
*p++ = 0xfb;
}
runtime·memmove((byte*)new.hi - used, (byte*)old.hi - used, used);
oldstatus = runtime·readgstatus(gp);
oldstatus &= ~Gscan;
if(oldstatus == Gwaiting || oldstatus == Grunnable)
runtime·casgstatus(gp, oldstatus, Gcopystack); // oldstatus is Gwaiting or Grunnable
else
runtime·throw("copystack: bad status, not Gwaiting or Grunnable");
// Swap out old stack for new one
gp->stack = new;
gp->stackguard0 = new.lo + StackGuard; // NOTE: might clobber a preempt request
gp->sched.sp = new.hi - used;
runtime·casgstatus(gp, Gcopystack, oldstatus); // oldstatus is Gwaiting or Grunnable
// free old stack
if(StackPoisonCopy) {
p = (byte*)old.lo;
ep = (byte*)old.hi;
while(p < ep)
*p++ = 0xfc;
}
if(newsize > old.hi-old.lo) {
// growing, free stack immediately
runtime·stackfree(old);
} else {
// shrinking, queue up free operation. We can't actually free the stack
// just yet because we might run into the following situation:
// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
// 2) The stack that pointer points to is shrunk
// 3) The old stack is freed
// 4) The containing span is marked free
// 5) GC attempts to mark the SudoG.elem pointer. The marking fails because
// the pointer looks like a pointer into a free span.
// By not freeing, we prevent step #4 until GC is done.
runtime·lock(&runtime·stackpoolmu);
*(Stack*)old.lo = stackfreequeue;
stackfreequeue = old;
runtime·unlock(&runtime·stackpoolmu);
}
}
// round x up to a power of 2.
int32
runtime·round2(int32 x)
{
int32 s;
s = 0;
while((1 << s) < x)
s++;
return 1 << s;
}
// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the GC is trying to stop this g then it will set preemptscan to true.
void
runtime·newstack(void)
{
int32 oldsize, newsize;
uintptr sp;
G *gp;
Gobuf morebuf;
if(g->m->morebuf.g->stackguard0 == (uintptr)StackFork)
runtime·throw("stack growth after fork");
if(g->m->morebuf.g != g->m->curg) {
runtime·printf("runtime: newstack called from g=%p\n"
"\tm=%p m->curg=%p m->g0=%p m->gsignal=%p\n",
g->m->morebuf.g, g->m, g->m->curg, g->m->g0, g->m->gsignal);
morebuf = g->m->morebuf;
runtime·traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g);
runtime·throw("runtime: wrong goroutine in newstack");
}
if(g->m->curg->throwsplit)
runtime·throw("runtime: stack split at bad time");
// The goroutine must be executing in order to call newstack,
// so it must be Grunning or Gscanrunning.
gp = g->m->curg;
morebuf = g->m->morebuf;
g->m->morebuf.pc = (uintptr)nil;
g->m->morebuf.lr = (uintptr)nil;
g->m->morebuf.sp = (uintptr)nil;
g->m->morebuf.g = (G*)nil;
runtime·casgstatus(gp, Grunning, Gwaiting);
gp->waitreason = runtime·gostringnocopy((byte*)"stack growth");
runtime·rewindmorestack(&gp->sched);
if(gp->stack.lo == 0)
runtime·throw("missing stack in newstack");
sp = gp->sched.sp;
if(thechar == '6' || thechar == '8') {
// The call to morestack cost a word.
sp -= sizeof(uintreg);
}
if(StackDebug >= 1 || sp < gp->stack.lo) {
runtime·printf("runtime: newstack sp=%p stack=[%p, %p]\n"
"\tmorebuf={pc:%p sp:%p lr:%p}\n"
"\tsched={pc:%p sp:%p lr:%p ctxt:%p}\n",
sp, gp->stack.lo, gp->stack.hi,
g->m->morebuf.pc, g->m->morebuf.sp, g->m->morebuf.lr,
gp->sched.pc, gp->sched.sp, gp->sched.lr, gp->sched.ctxt);
}
if(sp < gp->stack.lo) {
runtime·printf("runtime: gp=%p, gp->status=%d\n ", (void*)gp, runtime·readgstatus(gp));
runtime·printf("runtime: split stack overflow: %p < %p\n", sp, gp->stack.lo);
runtime·throw("runtime: split stack overflow");
}
if(gp->stackguard0 == (uintptr)StackPreempt) {
if(gp == g->m->g0)
runtime·throw("runtime: preempt g0");
if(g->m->p == nil && g->m->locks == 0)
runtime·throw("runtime: g is running but p is not");
if(gp->preemptscan) {
runtime·gcphasework(gp);
runtime·casgstatus(gp, Gwaiting, Grunning);
gp->stackguard0 = gp->stack.lo + StackGuard;
gp->preempt = false;
gp->preemptscan = false; // Tells the GC premption was successful.
runtime·gogo(&gp->sched); // never return
}
// Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code.
if(g->m->locks || g->m->mallocing || g->m->gcing || g->m->p->status != Prunning) {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.
gp->stackguard0 = gp->stack.lo + StackGuard;
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gogo(&gp->sched); // never return
}
// Act like goroutine called runtime.Gosched.
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gosched_m(gp); // never return
}
// Allocate a bigger segment and move the stack.
oldsize = gp->stack.hi - gp->stack.lo;
newsize = oldsize * 2;
if(newsize > runtime·maxstacksize) {
runtime·printf("runtime: goroutine stack exceeds %D-byte limit\n", (uint64)runtime·maxstacksize);
runtime·throw("stack overflow");
}
// Note that the concurrent GC might be scanning the stack as we try to replace it.
// copystack takes care of the appropriate coordination with the stack scanner.
copystack(gp, newsize);
if(StackDebug >= 1)
runtime·printf("stack grow done\n");
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gogo(&gp->sched);
}
#pragma textflag NOSPLIT
void
runtime·nilfunc(void)
{
*(byte*)0 = 0;
}
// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
void
runtime·gostartcallfn(Gobuf *gobuf, FuncVal *fv)
{
void *fn;
if(fv != nil)
fn = fv->fn;
else
fn = runtime·nilfunc;
runtime·gostartcall(gobuf, fn, fv);
}
// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
void
runtime·shrinkstack(G *gp)
{
uintptr used, oldsize, newsize;
if(runtime·readgstatus(gp) == Gdead) {
if(gp->stack.lo != 0) {
// Free whole stack - it will get reallocated
// if G is used again.
runtime·stackfree(gp->stack);
gp->stack.lo = 0;
gp->stack.hi = 0;
}
return;
}
if(gp->stack.lo == 0)
runtime·throw("missing stack in shrinkstack");
oldsize = gp->stack.hi - gp->stack.lo;
newsize = oldsize / 2;
if(newsize < FixedStack)
return; // don't shrink below the minimum-sized stack
used = gp->stack.hi - gp->sched.sp;
if(used >= oldsize / 4)
return; // still using at least 1/4 of the segment.
// We can't copy the stack if we're in a syscall.
// The syscall might have pointers into the stack.
if(gp->syscallsp != 0)
return;
#ifdef GOOS_windows
if(gp->m != nil && gp->m->libcallsp != 0)
return;
#endif
if(StackDebug > 0)
runtime·printf("shrinking stack %D->%D\n", (uint64)oldsize, (uint64)newsize);
copystack(gp, newsize);
}
// Do any delayed stack freeing that was queued up during GC.
void
runtime·shrinkfinish(void)
{
Stack s, t;
runtime·lock(&runtime·stackpoolmu);
s = stackfreequeue;
stackfreequeue = (Stack){0,0};
runtime·unlock(&runtime·stackpoolmu);
while(s.lo != 0) {
t = *(Stack*)s.lo;
runtime·stackfree(s);
s = t;
}
}
static void badc(void);
#pragma textflag NOSPLIT
void
runtime·morestackc(void)
{
void (*fn)(void);
fn = badc;
runtime·onM(&fn);
}
static void
badc(void)
{
runtime·throw("attempt to execute C code on Go stack");
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
const (
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
stackPreempt = ^uintptr(1313)
)
......@@ -2,117 +2,24 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Stack layout parameters.
Included both by runtime (compiled via 6c) and linkers (compiled via gcc).
The per-goroutine g->stackguard is set to point StackGuard bytes
above the bottom of the stack. Each function compares its stack
pointer against g->stackguard to check for overflow. To cut one
instruction from the check sequence for functions with tiny frames,
the stack is allowed to protrude StackSmall bytes below the stack
guard. Functions with large frames don't bother with the check and
always call morestack. The sequences are (for amd64, others are
similar):
guard = g->stackguard
frame = function's stack frame size
argsize = size of function arguments (call + return)
stack frame size <= StackSmall:
CMPQ guard, SP
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size > StackSmall but < StackBig
LEAQ (frame-StackSmall)(SP), R0
CMPQ guard, R0
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size >= StackBig:
MOVQ m->morearg, $((argsize << 32) | frame)
CALL morestack(SB)
The bottom StackGuard - StackSmall bytes are important: there has
to be enough room to execute functions that refuse to check for
stack overflow, either because they need to be adjacent to the
actual caller's frame (deferproc) or because they handle the imminent
stack overflow (morestack).
For example, deferproc might call malloc, which does one of the
above checks (without allocating a full frame), which might trigger
a call to morestack. This sequence needs to fit in the bottom
section of the stack. On amd64, morestack's frame is 40 bytes, and
deferproc's frame is 56 bytes. That fits well within the
StackGuard - StackSmall bytes at the bottom.
The linkers explore all possible call traces involving non-splitting
functions to make sure that this limit cannot be violated.
*/
// For the linkers. Must match Go definitions.
// TODO(rsc): Share Go definitions with linkers directly.
enum {
// StackSystem is a number of additional bytes to add
// to each stack below the usual guard area for OS-specific
// purposes like signal handling. Used on Windows and on
// Plan 9 because they do not use a separate stack.
#ifdef GOOS_windows
StackSystem = 512 * sizeof(uintptr),
#else
#ifdef GOOS_plan9
// The size of the note handler frame varies among architectures,
// but 512 bytes should be enough for every implementation.
StackSystem = 512,
#else
StackSystem = 0,
#endif // Plan 9
#endif // Windows
// The minimum size of stack used by Go code
StackMin = 2048,
// The minimum stack size to allocate.
// The hackery here rounds FixedStack0 up to a power of 2.
FixedStack0 = StackMin + StackSystem,
FixedStack1 = FixedStack0 - 1,
FixedStack2 = FixedStack1 | (FixedStack1 >> 1),
FixedStack3 = FixedStack2 | (FixedStack2 >> 2),
FixedStack4 = FixedStack3 | (FixedStack3 >> 4),
FixedStack5 = FixedStack4 | (FixedStack4 >> 8),
FixedStack6 = FixedStack5 | (FixedStack5 >> 16),
FixedStack = FixedStack6 + 1,
// Functions that need frames bigger than this use an extra
// instruction to do the stack split check, to avoid overflow
// in case SP - framesize wraps below zero.
// This value can be no bigger than the size of the unmapped
// space at zero.
StackBig = 4096,
// The stack guard is a pointer this many bytes above the
// bottom of the stack.
StackGuard = 512 + StackSystem,
// After a stack split check the SP is allowed to be this
// many bytes below the stack guard. This saves an instruction
// in the checking sequence for tiny frames.
StackSmall = 128,
// The maximum number of bytes that a chain of NOSPLIT
// functions can use.
StackLimit = StackGuard - StackSystem - StackSmall,
};
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
#define StackPreempt ((uint64)-1314)
/*c2go
enum
{
StackPreempt = -1314,
};
*/
#define StackFork ((uint64)-1234)
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
const (
// StackDebug == 0: no logging
// == 1: logging of per-stack operations
// == 2: logging of per-frame operations
// == 3: logging of per-word updates
// == 4: logging of per-word reads
stackDebug = 0
stackFromSystem = 0 // allocate stacks from system memory instead of the heap
stackFaultOnFree = 0 // old stacks are mapped noaccess to detect use after free
stackPoisonCopy = 0 // fill stack that should not be accessed with garbage, to detect bad dereferences during copy
stackCache = 1
)
const (
uintptrMask = 1<<(8*ptrSize) - 1
poisonGC = uintptrMask & 0xf969696969696969
poisonStack = uintptrMask & 0x6868686868686868
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
stackPreempt = uintptrMask & -1314
// Thread is forking.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
stackFork = uintptrMask & -1234
)
// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
// order = log_2(size/FixedStack)
// There is a free list for each order.
// TODO: one lock per order?
var stackpool [_NumStackOrders]mspan
var stackpoolmu mutex
var stackfreequeue stack
func stackinit() {
if _StackCacheSize&_PageMask != 0 {
gothrow("cache size must be a multiple of page size")
}
for i := range stackpool {
mSpanList_Init(&stackpool[i])
}
}
// Allocates a stack from the free pool. Must be called with
// stackpoolmu held.
func stackpoolalloc(order uint8) *mlink {
list := &stackpool[order]
s := list.next
if s == list {
// no free stacks. Allocate another span worth.
s = mHeap_AllocStack(&mheap_, _StackCacheSize>>_PageShift)
if s == nil {
gothrow("out of memory")
}
if s.ref != 0 {
gothrow("bad ref")
}
if s.freelist != nil {
gothrow("bad freelist")
}
for i := uintptr(0); i < _StackCacheSize; i += _FixedStack << order {
x := (*mlink)(unsafe.Pointer(uintptr(s.start)<<_PageShift + i))
x.next = s.freelist
s.freelist = x
}
mSpanList_Insert(list, s)
}
x := s.freelist
if x == nil {
gothrow("span has no free stacks")
}
s.freelist = x.next
s.ref++
if s.freelist == nil {
// all stacks in s are allocated.
mSpanList_Remove(s)
}
return x
}
// Adds stack x to the free pool. Must be called with stackpoolmu held.
func stackpoolfree(x *mlink, order uint8) {
s := mHeap_Lookup(&mheap_, (unsafe.Pointer)(x))
if s.state != _MSpanStack {
gothrow("freeing stack not in a stack span")
}
if s.freelist == nil {
// s will now have a free stack
mSpanList_Insert(&stackpool[order], s)
}
x.next = s.freelist
s.freelist = x
s.ref--
if s.ref == 0 {
// span is completely free - return to heap
mSpanList_Remove(s)
s.freelist = nil
mHeap_FreeStack(&mheap_, s)
}
}
// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
func stackcacherefill(c *mcache, order uint8) {
if stackDebug >= 1 {
print("stackcacherefill order=", order, "\n")
}
// Grab some stacks from the global cache.
// Grab half of the allowed capacity (to prevent thrashing).
var list *mlink
var size uintptr
lock(&stackpoolmu)
for size < _StackCacheSize/2 {
x := stackpoolalloc(order)
x.next = list
list = x
size += _FixedStack << order
}
unlock(&stackpoolmu)
c.stackcache[order].list = list
c.stackcache[order].size = size
}
func stackcacherelease(c *mcache, order uint8) {
if stackDebug >= 1 {
print("stackcacherelease order=", order, "\n")
}
x := c.stackcache[order].list
size := c.stackcache[order].size
lock(&stackpoolmu)
for size > _StackCacheSize/2 {
y := x.next
stackpoolfree(x, order)
x = y
size -= _FixedStack << order
}
unlock(&stackpoolmu)
c.stackcache[order].list = x
c.stackcache[order].size = size
}
func stackcache_clear(c *mcache) {
if stackDebug >= 1 {
print("stackcache clear\n")
}
lock(&stackpoolmu)
for order := uint8(0); order < _NumStackOrders; order++ {
x := c.stackcache[order].list
for x != nil {
y := x.next
stackpoolfree(x, order)
x = y
}
c.stackcache[order].list = nil
c.stackcache[order].size = 0
}
unlock(&stackpoolmu)
}
func stackalloc(n uint32) stack {
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
thisg := getg()
if thisg != thisg.m.g0 {
gothrow("stackalloc not on scheduler stack")
}
if n&(n-1) != 0 {
gothrow("stack size not a power of 2")
}
if stackDebug >= 1 {
print("stackalloc ", n, "\n")
}
if debug.efence != 0 || stackFromSystem != 0 {
v := sysAlloc(round(uintptr(n), _PageSize), &memstats.stacks_sys)
if v == nil {
gothrow("out of memory (stackalloc)")
}
return stack{uintptr(v), uintptr(v) + uintptr(n)}
}
// Small stacks are allocated with a fixed-size free-list allocator.
// If we need a stack of a bigger size, we fall back on allocating
// a dedicated span.
var v unsafe.Pointer
if stackCache != 0 && n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
order := uint8(0)
n2 := n
for n2 > _FixedStack {
order++
n2 >>= 1
}
var x *mlink
c := thisg.m.mcache
if c == nil || thisg.m.gcing != 0 || thisg.m.helpgc != 0 {
// c == nil can happen in the guts of exitsyscall or
// procresize. Just get a stack from the global pool.
// Also don't touch stackcache during gc
// as it's flushed concurrently.
lock(&stackpoolmu)
x = stackpoolalloc(order)
unlock(&stackpoolmu)
} else {
x = c.stackcache[order].list
if x == nil {
stackcacherefill(c, order)
x = c.stackcache[order].list
}
c.stackcache[order].list = x.next
c.stackcache[order].size -= uintptr(n)
}
v = (unsafe.Pointer)(x)
} else {
s := mHeap_AllocStack(&mheap_, round(uintptr(n), _PageSize)>>_PageShift)
if s == nil {
gothrow("out of memory")
}
v = (unsafe.Pointer)(s.start << _PageShift)
}
if raceenabled {
racemalloc(v, uintptr(n))
}
if stackDebug >= 1 {
print(" allocated ", v, "\n")
}
return stack{uintptr(v), uintptr(v) + uintptr(n)}
}
func stackfree(stk stack) {
gp := getg()
n := stk.hi - stk.lo
v := (unsafe.Pointer)(stk.lo)
if n&(n-1) != 0 {
gothrow("stack not a power of 2")
}
if stackDebug >= 1 {
println("stackfree", v, n)
memclr(v, n) // for testing, clobber stack data
}
if debug.efence != 0 || stackFromSystem != 0 {
if debug.efence != 0 || stackFaultOnFree != 0 {
sysFault(v, n)
} else {
sysFree(v, n, &memstats.stacks_sys)
}
return
}
if stackCache != 0 && n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
order := uint8(0)
n2 := n
for n2 > _FixedStack {
order++
n2 >>= 1
}
x := (*mlink)(v)
c := gp.m.mcache
if c == nil || gp.m.gcing != 0 || gp.m.helpgc != 0 {
lock(&stackpoolmu)
stackpoolfree(x, order)
unlock(&stackpoolmu)
} else {
if c.stackcache[order].size >= _StackCacheSize {
stackcacherelease(c, order)
}
x.next = c.stackcache[order].list
c.stackcache[order].list = x
c.stackcache[order].size += n
}
} else {
s := mHeap_Lookup(&mheap_, v)
if s.state != _MSpanStack {
println(hex(s.start<<_PageShift), v)
gothrow("bad span state")
}
mHeap_FreeStack(&mheap_, s)
}
}
var maxstacksize uintptr = 1 << 20 // enough until runtime.main sets it for real
var mapnames = []string{
_BitsDead: "---",
_BitsScalar: "scalar",
_BitsPointer: "ptr",
}
// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | return address |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+
// | return address |
// +------------------+ <- frame->sp
type adjustinfo struct {
old stack
delta uintptr // ptr distance from old to new stack (newbase - oldbase)
}
// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
func adjustpointer(adjinfo *adjustinfo, vpp unsafe.Pointer) {
pp := (*unsafe.Pointer)(vpp)
p := *pp
if stackDebug >= 4 {
print(" ", pp, ":", p, "\n")
}
if adjinfo.old.lo <= uintptr(p) && uintptr(p) < adjinfo.old.hi {
*pp = add(p, adjinfo.delta)
if stackDebug >= 3 {
print(" adjust ptr ", pp, ":", p, " -> ", *pp, "\n")
}
}
}
type gobitvector struct {
n uintptr
bytedata []uint8
}
func gobv(bv bitvector) gobitvector {
return gobitvector{
uintptr(bv.n),
(*[1 << 30]byte)(unsafe.Pointer(bv.bytedata))[:(bv.n+7)/8],
}
}
func ptrbits(bv *gobitvector, i uintptr) uint8 {
return (bv.bytedata[i/4] >> ((i & 3) * 2)) & 3
}
// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
func adjustpointers(scanp unsafe.Pointer, cbv *bitvector, adjinfo *adjustinfo, f *_func) {
bv := gobv(*cbv)
minp := adjinfo.old.lo
maxp := adjinfo.old.hi
delta := adjinfo.delta
num := uintptr(bv.n / _BitsPerPointer)
for i := uintptr(0); i < num; i++ {
if stackDebug >= 4 {
print(" ", add(scanp, i*ptrSize), ":", mapnames[ptrbits(&bv, i)], ":", hex(*(*uintptr)(add(scanp, i*ptrSize))), " # ", i, " ", bv.bytedata[i/4], "\n")
}
switch ptrbits(&bv, i) {
default:
gothrow("unexpected pointer bits")
case _BitsDead:
if debug.gcdead != 0 {
*(*unsafe.Pointer)(add(scanp, i*ptrSize)) = unsafe.Pointer(uintptr(poisonStack))
}
case _BitsScalar:
// ok
case _BitsPointer:
p := *(*unsafe.Pointer)(add(scanp, i*ptrSize))
up := uintptr(p)
if f != nil && 0 < up && up < _PageSize && invalidptr != 0 || up == poisonGC || up == poisonStack {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
getg().m.traceback = 2
print("runtime: bad pointer in frame ", gofuncname(f), " at ", add(scanp, i*ptrSize), ": ", p, "\n")
gothrow("invalid stack pointer")
}
if minp <= up && up < maxp {
if stackDebug >= 3 {
print("adjust ptr ", p, " ", gofuncname(f), "\n")
}
*(*unsafe.Pointer)(add(scanp, i*ptrSize)) = unsafe.Pointer(up + delta)
}
}
}
}
// Note: the argument/return area is adjusted by the callee.
func adjustframe(frame *stkframe, arg unsafe.Pointer) bool {
adjinfo := (*adjustinfo)(arg)
targetpc := frame.continpc
if targetpc == 0 {
// Frame is dead.
return true
}
f := frame.fn
if stackDebug >= 2 {
print(" adjusting ", funcname(f), " frame=[", hex(frame.sp), ",", hex(frame.fp), "] pc=", hex(frame.pc), " continpc=", hex(frame.continpc), "\n")
}
if f.entry == switchtoMPC {
// A special routine at the bottom of stack of a goroutine that does an onM call.
// We will allow it to be copied even though we don't
// have full GC info for it (because it is written in asm).
return true
}
if targetpc != f.entry {
targetpc--
}
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc)
if pcdata == -1 {
pcdata = 0 // in prologue
}
// Adjust local variables if stack frame has been allocated.
size := frame.varp - frame.sp
var minsize uintptr
if thechar != '6' && thechar != '8' {
minsize = ptrSize
} else {
minsize = 0
}
if size > minsize {
var bv bitvector
stackmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
if stackmap == nil || stackmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
gothrow("missing stackmap")
}
// Locals bitmap information, scan just the pointers in locals.
if pcdata < 0 || pcdata >= stackmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
gothrow("bad symbol table")
}
bv = stackmapdata(stackmap, pcdata)
size = (uintptr(bv.n) * ptrSize) / _BitsPerPointer
if stackDebug >= 3 {
print(" locals ", pcdata, "/", stackmap.n, " ", size/ptrSize, " words ", bv.bytedata, "\n")
}
adjustpointers(unsafe.Pointer(frame.varp-size), &bv, adjinfo, f)
}
// Adjust arguments.
if frame.arglen > 0 {
var bv bitvector
if frame.argmap != nil {
bv = *frame.argmap
} else {
stackmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stackmap == nil || stackmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped args ", frame.argp, "+", uintptr(frame.arglen), "\n")
gothrow("missing stackmap")
}
if pcdata < 0 || pcdata >= stackmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
gothrow("bad symbol table")
}
bv = stackmapdata(stackmap, pcdata)
}
if stackDebug >= 3 {
print(" args\n")
}
adjustpointers(unsafe.Pointer(frame.argp), &bv, adjinfo, nil)
}
return true
}
func adjustctxt(gp *g, adjinfo *adjustinfo) {
adjustpointer(adjinfo, (unsafe.Pointer)(&gp.sched.ctxt))
}
func adjustdefers(gp *g, adjinfo *adjustinfo) {
// Adjust defer argument blocks the same way we adjust active stack frames.
tracebackdefers(gp, adjustframe, noescape(unsafe.Pointer(adjinfo)))
// Adjust pointers in the Defer structs.
// Defer structs themselves are never on the stack.
for d := gp._defer; d != nil; d = d.link {
adjustpointer(adjinfo, (unsafe.Pointer)(&d.fn))
adjustpointer(adjinfo, (unsafe.Pointer)(&d.argp))
adjustpointer(adjinfo, (unsafe.Pointer)(&d._panic))
}
}
func adjustpanics(gp *g, adjinfo *adjustinfo) {
// Panics are on stack and already adjusted.
// Update pointer to head of list in G.
adjustpointer(adjinfo, (unsafe.Pointer)(&gp._panic))
}
func adjustsudogs(gp *g, adjinfo *adjustinfo) {
// the data elements pointed to by a SudoG structure
// might be in the stack.
for s := gp.waiting; s != nil; s = s.waitlink {
adjustpointer(adjinfo, (unsafe.Pointer)(&s.elem))
adjustpointer(adjinfo, (unsafe.Pointer)(&s.selectdone))
}
}
func fillstack(stk stack, b byte) {
for p := stk.lo; p < stk.hi; p++ {
*(*byte)(unsafe.Pointer(p)) = b
}
}
// Copies gp's stack to a new stack of a different size.
func copystack(gp *g, newsize uintptr) {
if gp.syscallsp != 0 {
gothrow("stack growth not allowed in system call")
}
old := gp.stack
if old.lo == 0 {
gothrow("nil stackbase")
}
used := old.hi - gp.sched.sp
// allocate new stack
new := stackalloc(uint32(newsize))
if stackPoisonCopy != 0 {
fillstack(new, 0xfd)
}
if stackDebug >= 1 {
print("copystack gp=", gp, " [", hex(old.lo), " ", hex(old.hi-used), " ", hex(old.hi), "]/", old.hi-old.lo, " -> [", hex(new.lo), " ", hex(new.hi-used), " ", hex(new.hi), "]/", newsize, "\n")
}
// adjust pointers in the to-be-copied frames
var adjinfo adjustinfo
adjinfo.old = old
adjinfo.delta = new.hi - old.hi
gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&adjinfo)), 0)
// adjust other miscellaneous things that have pointers into stacks.
adjustctxt(gp, &adjinfo)
adjustdefers(gp, &adjinfo)
adjustpanics(gp, &adjinfo)
adjustsudogs(gp, &adjinfo)
// copy the stack to the new location
if stackPoisonCopy != 0 {
fillstack(new, 0xfb)
}
memmove(unsafe.Pointer(new.hi-used), unsafe.Pointer(old.hi-used), used)
oldstatus := readgstatus(gp)
oldstatus &^= _Gscan
if oldstatus == _Gwaiting || oldstatus == _Grunnable {
casgstatus(gp, oldstatus, _Gcopystack) // oldstatus is Gwaiting or Grunnable
} else {
gothrow("copystack: bad status, not Gwaiting or Grunnable")
}
// Swap out old stack for new one
gp.stack = new
gp.stackguard0 = new.lo + _StackGuard // NOTE: might clobber a preempt request
gp.sched.sp = new.hi - used
casgstatus(gp, _Gcopystack, oldstatus) // oldstatus is Gwaiting or Grunnable
// free old stack
if stackPoisonCopy != 0 {
fillstack(old, 0xfc)
}
if newsize > old.hi-old.lo {
// growing, free stack immediately
stackfree(old)
} else {
// shrinking, queue up free operation. We can't actually free the stack
// just yet because we might run into the following situation:
// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
// 2) The stack that pointer points to is shrunk
// 3) The old stack is freed
// 4) The containing span is marked free
// 5) GC attempts to mark the SudoG.elem pointer. The marking fails because
// the pointer looks like a pointer into a free span.
// By not freeing, we prevent step #4 until GC is done.
lock(&stackpoolmu)
*(*stack)(unsafe.Pointer(old.lo)) = stackfreequeue
stackfreequeue = old
unlock(&stackpoolmu)
}
}
// round x up to a power of 2.
func round2(x int32) int32 {
s := uint(0)
for 1<<s < x {
s++
}
return 1 << s
}
// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the GC is trying to stop this g then it will set preemptscan to true.
func newstack() {
thisg := getg()
// TODO: double check all gp. shouldn't be getg().
if thisg.m.morebuf.g.stackguard0 == stackFork {
gothrow("stack growth after fork")
}
if thisg.m.morebuf.g != thisg.m.curg {
print("runtime: newstack called from g=", thisg.m.morebuf.g, "\n"+"\tm=", thisg.m, " m->curg=", thisg.m.curg, " m->g0=", thisg.m.g0, " m->gsignal=", thisg.m.gsignal, "\n")
morebuf := thisg.m.morebuf
traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g)
gothrow("runtime: wrong goroutine in newstack")
}
if thisg.m.curg.throwsplit {
gp := thisg.m.curg
// Update syscallsp, syscallpc in case traceback uses them.
morebuf := thisg.m.morebuf
gp.syscallsp = morebuf.sp
gp.syscallpc = morebuf.pc
print("runtime: newstack sp=", hex(gp.sched.sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")
gothrow("runtime: stack split at bad time")
}
// The goroutine must be executing in order to call newstack,
// so it must be Grunning or Gscanrunning.
gp := thisg.m.curg
morebuf := thisg.m.morebuf
thisg.m.morebuf.pc = 0
thisg.m.morebuf.lr = 0
thisg.m.morebuf.sp = 0
thisg.m.morebuf.g = nil
casgstatus(gp, _Grunning, _Gwaiting)
gp.waitreason = "stack growth"
rewindmorestack(&gp.sched)
if gp.stack.lo == 0 {
gothrow("missing stack in newstack")
}
sp := gp.sched.sp
if thechar == '6' || thechar == '8' {
// The call to morestack cost a word.
sp -= ptrSize
}
if stackDebug >= 1 || sp < gp.stack.lo {
print("runtime: newstack sp=", hex(sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")
}
if sp < gp.stack.lo {
print("runtime: gp=", gp, ", gp->status=", hex(readgstatus(gp)), "\n ")
print("runtime: split stack overflow: ", hex(sp), " < ", hex(gp.stack.lo), "\n")
gothrow("runtime: split stack overflow")
}
if gp.stackguard0 == stackPreempt {
if gp == thisg.m.g0 {
gothrow("runtime: preempt g0")
}
if thisg.m.p == nil && thisg.m.locks == 0 {
gothrow("runtime: g is running but p is not")
}
if gp.preemptscan {
gcphasework(gp)
casgstatus(gp, _Gwaiting, _Grunning)
gp.stackguard0 = gp.stack.lo + _StackGuard
gp.preempt = false
gp.preemptscan = false // Tells the GC premption was successful.
gogo(&gp.sched) // never return
}
// Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code.
if thisg.m.locks != 0 || thisg.m.mallocing != 0 || thisg.m.gcing != 0 || thisg.m.p.status != _Prunning {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.
gp.stackguard0 = gp.stack.lo + _StackGuard
casgstatus(gp, _Gwaiting, _Grunning)
gogo(&gp.sched) // never return
}
// Act like goroutine called runtime.Gosched.
casgstatus(gp, _Gwaiting, _Grunning)
gosched_m(gp) // never return
}
// Allocate a bigger segment and move the stack.
oldsize := int(gp.stack.hi - gp.stack.lo)
newsize := oldsize * 2
if uintptr(newsize) > maxstacksize {
print("runtime: goroutine stack exceeds ", maxstacksize, "-byte limit\n")
gothrow("stack overflow")
}
// Note that the concurrent GC might be scanning the stack as we try to replace it.
// copystack takes care of the appropriate coordination with the stack scanner.
copystack(gp, uintptr(newsize))
if stackDebug >= 1 {
print("stack grow done\n")
}
casgstatus(gp, _Gwaiting, _Grunning)
gogo(&gp.sched)
}
//go:nosplit
func nilfunc() {
*(*uint8)(nil) = 0
}
// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
func gostartcallfn(gobuf *gobuf, fv *funcval) {
var fn unsafe.Pointer
if fv != nil {
fn = (unsafe.Pointer)(fv.fn)
} else {
fn = unsafe.Pointer(funcPC(nilfunc))
}
gostartcall(gobuf, fn, (unsafe.Pointer)(fv))
}
// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
func shrinkstack(gp *g) {
if readgstatus(gp) == _Gdead {
if gp.stack.lo != 0 {
// Free whole stack - it will get reallocated
// if G is used again.
stackfree(gp.stack)
gp.stack.lo = 0
gp.stack.hi = 0
}
return
}
if gp.stack.lo == 0 {
gothrow("missing stack in shrinkstack")
}
oldsize := gp.stack.hi - gp.stack.lo
newsize := oldsize / 2
if newsize < _FixedStack {
return // don't shrink below the minimum-sized stack
}
used := gp.stack.hi - gp.sched.sp
if used >= oldsize/4 {
return // still using at least 1/4 of the segment.
}
// We can't copy the stack if we're in a syscall.
// The syscall might have pointers into the stack.
if gp.syscallsp != 0 {
return
}
/* TODO
if _Windows && gp.m != nil && gp.m.libcallsp != 0 {
return
}
*/
if stackDebug > 0 {
print("shrinking stack ", oldsize, "->", newsize, "\n")
}
copystack(gp, newsize)
}
// Do any delayed stack freeing that was queued up during GC.
func shrinkfinish() {
lock(&stackpoolmu)
s := stackfreequeue
stackfreequeue = stack{}
unlock(&stackpoolmu)
for s.lo != 0 {
t := *(*stack)(unsafe.Pointer(s.lo))
stackfree(s)
s = t
}
}
//go:nosplit
func morestackc() {
onM(func() {
gothrow("attempt to execute C code on Go stack")
})
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
/*
Stack layout parameters.
Included both by runtime (compiled via 6c) and linkers (compiled via gcc).
The per-goroutine g->stackguard is set to point StackGuard bytes
above the bottom of the stack. Each function compares its stack
pointer against g->stackguard to check for overflow. To cut one
instruction from the check sequence for functions with tiny frames,
the stack is allowed to protrude StackSmall bytes below the stack
guard. Functions with large frames don't bother with the check and
always call morestack. The sequences are (for amd64, others are
similar):
guard = g->stackguard
frame = function's stack frame size
argsize = size of function arguments (call + return)
stack frame size <= StackSmall:
CMPQ guard, SP
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size > StackSmall but < StackBig
LEAQ (frame-StackSmall)(SP), R0
CMPQ guard, R0
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size >= StackBig:
MOVQ m->morearg, $((argsize << 32) | frame)
CALL morestack(SB)
The bottom StackGuard - StackSmall bytes are important: there has
to be enough room to execute functions that refuse to check for
stack overflow, either because they need to be adjacent to the
actual caller's frame (deferproc) or because they handle the imminent
stack overflow (morestack).
For example, deferproc might call malloc, which does one of the
above checks (without allocating a full frame), which might trigger
a call to morestack. This sequence needs to fit in the bottom
section of the stack. On amd64, morestack's frame is 40 bytes, and
deferproc's frame is 56 bytes. That fits well within the
StackGuard - StackSmall bytes at the bottom.
The linkers explore all possible call traces involving non-splitting
functions to make sure that this limit cannot be violated.
*/
const (
// StackSystem is a number of additional bytes to add
// to each stack below the usual guard area for OS-specific
// purposes like signal handling. Used on Windows and on
// Plan 9 because they do not use a separate stack.
_StackSystem = _Windows*512*ptrSize + _Plan9*512
// The minimum size of stack used by Go code
_StackMin = 2048
// The minimum stack size to allocate.
// The hackery here rounds FixedStack0 up to a power of 2.
_FixedStack0 = _StackMin + _StackSystem
_FixedStack1 = _FixedStack0 - 1
_FixedStack2 = _FixedStack1 | (_FixedStack1 >> 1)
_FixedStack3 = _FixedStack2 | (_FixedStack2 >> 2)
_FixedStack4 = _FixedStack3 | (_FixedStack3 >> 4)
_FixedStack5 = _FixedStack4 | (_FixedStack4 >> 8)
_FixedStack6 = _FixedStack5 | (_FixedStack5 >> 16)
_FixedStack = _FixedStack6 + 1
// Functions that need frames bigger than this use an extra
// instruction to do the stack split check, to avoid overflow
// in case SP - framesize wraps below zero.
// This value can be no bigger than the size of the unmapped
// space at zero.
_StackBig = 4096
// The stack guard is a pointer this many bytes above the
// bottom of the stack.
_StackGuard = 512 + _StackSystem
// After a stack split check the SP is allowed to be this
// many bytes below the stack guard. This saves an instruction
// in the checking sequence for tiny frames.
_StackSmall = 128
// The maximum number of bytes that a chain of NOSPLIT
// functions can use.
_StackLimit = _StackGuard - _StackSystem - _StackSmall
)
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
const (
_StackPreempt = uintptrMask & -1314
_StackFork = uintptrMask & -1234
)
......@@ -22,8 +22,7 @@ func (f *Func) raw() *_func {
// funcdata.h
const (
_PCDATA_ArgSize = 0
_PCDATA_StackMapIndex = 1
_PCDATA_StackMapIndex = 0
_FUNCDATA_ArgsPointerMaps = 0
_FUNCDATA_LocalsPointerMaps = 1
_FUNCDATA_DeadValueMaps = 2
......
......@@ -41,6 +41,7 @@ var (
newprocPC uintptr
rt0_goPC uintptr
sigpanicPC uintptr
switchtoMPC uintptr
externalthreadhandlerp uintptr // initialized elsewhere
)
......@@ -59,6 +60,7 @@ func tracebackinit() {
newprocPC = funcPC(newproc)
rt0_goPC = funcPC(rt0_go)
sigpanicPC = funcPC(sigpanic)
switchtoMPC = funcPC(switchtoM)
}
// Traceback over the deferred function calls.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment