Commit ff3fa1b3 authored by Dmitriy Vyukov's avatar Dmitriy Vyukov

runtime: make the GC bitmap a byte array

Half the code in the garbage collector accesses the bitmap
as an array of bytes instead of as an array of uintptrs.
This is tricky to do correctly in a portable fashion,
it breaks on big-endian systems.
Make the bitmap a byte array.
Simplifies markallocated, scanblock and span sweep along the way,
as we don't need to recalculate bitmap position for each word.

LGTM=khr
R=golang-codereviews, khr
CC=golang-codereviews, rlh, rsc
https://golang.org/cl/125250043
parent fb44fb6c
......@@ -619,6 +619,14 @@ TEXT runtime·atomicstore64(SB), NOSPLIT, $0-12
XADDL AX, (SP)
RET
// void runtime·atomicor8(byte volatile*, byte);
TEXT runtime·atomicor8(SB), NOSPLIT, $0-8
MOVL ptr+0(FP), AX
MOVB val+4(FP), BX
LOCK
ORB BX, (AX)
RET
// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
......
......@@ -702,6 +702,14 @@ TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16
XCHGQ AX, 0(BX)
RET
// void runtime·atomicor8(byte volatile*, byte);
TEXT runtime·atomicor8(SB), NOSPLIT, $0-16
MOVQ ptr+0(FP), AX
MOVB val+8(FP), BX
LOCK
ORB BX, (AX)
RET
// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
......
......@@ -167,3 +167,19 @@ runtime·atomicstore64(uint64 volatile *addr, uint64 v)
*addr = v;
runtime·unlock(LOCK(addr));
}
#pragma textflag NOSPLIT
void
runtime·atomicor8(byte volatile *addr, byte v)
{
uint32 *addr32, old, word, shift;
// Align down to 4 bytes and use 32-bit CAS.
addr32 = (uint32*)((uintptr)addr & ~3);
word = ((uint32)v) << (((uintptr)addr & 3) * 8);
for(;;) {
old = *addr32;
if(runtime·cas(addr32, old, old|word))
break;
}
}
......@@ -820,7 +820,8 @@ dumpbvtypes(BitVector *bv, byte *base)
static BitVector
makeheapobjbv(byte *p, uintptr size)
{
uintptr off, shift, *bitp, bits, nptr, i;
uintptr off, nptr, i;
byte shift, *bitp, bits;
bool mw;
// Extend the temp buffer if necessary.
......@@ -838,13 +839,13 @@ makeheapobjbv(byte *p, uintptr size)
mw = false;
for(i = 0; i < nptr; i++) {
off = (uintptr*)(p + i*PtrSize) - (uintptr*)runtime·mheap.arena_start;
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
bits = (*bitp >> (shift + 2)) & 3;
bitp = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
bits = (*bitp >> (shift + 2)) & BitsMask;
if(!mw && bits == BitsDead)
break; // end of heap object
mw = !mw && bits == BitsMultiWord;
tmpbuf[i*BitsPerPointer/8] &= ~(3<<((i*BitsPerPointer)%8));
tmpbuf[i*BitsPerPointer/8] &= ~(BitsMask<<((i*BitsPerPointer)%8));
tmpbuf[i*BitsPerPointer/8] |= bits<<((i*BitsPerPointer)%8);
}
return (BitVector){i*BitsPerPointer, (uint32*)tmpbuf};
......
......@@ -22,8 +22,8 @@ const (
pageSize = 1 << pageShift
pageMask = pageSize - 1
wordsPerBitmapWord = ptrSize * 8 / 4
gcBits = 4
wordsPerBitmapByte = 8 / gcBits
bitsPerPointer = 2
bitsMask = 1<<bitsPerPointer - 1
pointersPerByte = 8 / bitsPerPointer
......@@ -211,8 +211,8 @@ func gomallocgc(size uintptr, typ *_type, flags int) unsafe.Pointer {
{
arena_start := uintptr(unsafe.Pointer(mheap_.arena_start))
off := (uintptr(x) - arena_start) / ptrSize
xbits := (*uintptr)(unsafe.Pointer(arena_start - off/wordsPerBitmapWord*ptrSize - ptrSize))
shift := (off % wordsPerBitmapWord) * gcBits
xbits := (*uint8)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
shift := (off % wordsPerBitmapByte) * gcBits
if debugMalloc && ((*xbits>>shift)&(bitMask|bitPtrMask)) != bitBoundary {
println("runtime: bits =", (*xbits>>shift)&(bitMask|bitPtrMask))
gothrow("bad bits in markallocated")
......@@ -260,8 +260,7 @@ func gomallocgc(size uintptr, typ *_type, flags int) unsafe.Pointer {
ptrmask = (*uint8)(unsafe.Pointer(&typ.gc[0])) // embed mask
}
if size == 2*ptrSize {
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = *ptrmask | bitBoundary
*xbits = *ptrmask | bitBoundary
goto marked
}
te = uintptr(typ.size) / ptrSize
......@@ -283,19 +282,12 @@ func gomallocgc(size uintptr, typ *_type, flags int) unsafe.Pointer {
v &^= uint8(bitPtrMask << 4)
}
off := (uintptr(x) + i - arena_start) / ptrSize
xbits := (*uintptr)(unsafe.Pointer(arena_start - off/wordsPerBitmapWord*ptrSize - ptrSize))
shift := (off % wordsPerBitmapWord) * gcBits
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = v
*xbits = v
xbits = (*byte)(add(unsafe.Pointer(xbits), ^uintptr(0)))
}
if size0%(2*ptrSize) == 0 && size0 < size {
// Mark the word after last object's word as bitsDead.
off := (uintptr(x) + size0 - arena_start) / ptrSize
xbits := (*uintptr)(unsafe.Pointer(arena_start - off/wordsPerBitmapWord*ptrSize - ptrSize))
shift := (off % wordsPerBitmapWord) * gcBits
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = bitsDead << 2
*xbits = bitsDead << 2
}
}
marked:
......
......@@ -212,8 +212,8 @@ static struct {
static void
scanblock(byte *b, uintptr n, byte *ptrmask)
{
byte *obj, *p, *arena_start, *arena_used, **wp, *scanbuf[8], bits8;
uintptr i, nobj, size, idx, *bitp, bits, xbits, shift, x, off, cached, scanbufpos;
byte *obj, *p, *arena_start, *arena_used, **wp, *scanbuf[8], *ptrbitp, *bitp, bits, xbits, shift, cached;
uintptr i, nobj, size, idx, x, off, scanbufpos;
intptr ncached;
Workbuf *wbuf;
String *str;
......@@ -237,6 +237,10 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
for(i = 0; i < nelem(scanbuf); i++)
scanbuf[i] = nil;
ptrbitp = nil;
cached = 0;
ncached = 0;
// ptrmask can have 3 possible values:
// 1. nil - obtain pointer mask from GC bitmap.
// 2. ScanConservatively - don't use any mask, scan conservatively.
......@@ -295,8 +299,15 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
}
ptrmask = ScanConservatively;
}
cached = 0;
ncached = 0;
// Find bits of the beginning of the object.
if(ptrmask == nil) {
off = (uintptr*)b - (uintptr*)arena_start;
ptrbitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
cached = *ptrbitp >> shift;
cached &= ~bitBoundary;
ncached = (8 - shift)/gcBits;
}
for(i = 0; i < n; i += PtrSize) {
obj = nil;
// Find bits for this word.
......@@ -308,16 +319,13 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
// Consult GC bitmap.
if(ncached <= 0) {
// Refill cache.
off = (uintptr*)(b+i) - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
cached = *bitp >> shift;
ncached = (PtrSize*8 - shift)/gcBits;
cached = *--ptrbitp;
ncached = 2;
}
bits = cached;
cached >>= gcBits;
ncached--;
if(i != 0 && (bits&bitBoundary) != 0)
if((bits&bitBoundary) != 0)
break; // reached beginning of the next object
bits = (bits>>2)&BitsMask;
if(bits == BitsDead)
......@@ -336,11 +344,9 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
// Find the next pair of bits.
if(ptrmask == nil) {
if(ncached <= 0) {
off = (uintptr*)(b+i+PtrSize) - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
cached = *bitp >> shift;
ncached = (PtrSize*8 - shift)/gcBits;
// Refill cache.
cached = *--ptrbitp;
ncached = 2;
}
bits = (cached>>2)&BitsMask;
} else
......@@ -383,8 +389,14 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
if(bits == BitsSlice) {
i += 2*PtrSize;
cached >>= 2*gcBits;
ncached -= 2;
if(ncached == 2)
ncached = 0;
else if(ptrmask == nil) {
// Refill cache and consume one quadruple.
cached = *--ptrbitp;
cached >>= gcBits;
ncached = 1;
}
} else {
i += PtrSize;
cached >>= gcBits;
......@@ -398,20 +410,12 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
continue;
// Mark the object.
off = (uintptr*)obj - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
xbits = *bitp;
bits = (xbits >> shift) & bitMask;
if((bits&bitBoundary) == 0) {
// Not a beginning of a block, check if we have block boundary in xbits.
while(shift > 0) {
obj -= PtrSize;
shift -= gcBits;
bits = (xbits >> shift) & bitMask;
if((bits&bitBoundary) != 0)
goto havebits;
}
// Otherwise consult span table to find the block beginning.
// Not a beginning of a block, consult span table to find the block beginning.
k = (uintptr)obj>>PageShift;
x = k;
x -= (uintptr)arena_start>>PageShift;
......@@ -433,7 +437,6 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
goto markobj;
}
havebits:
// Now we have bits, bitp, and shift correct for
// obj pointing at the base of the object.
// Only care about not marked objects.
......@@ -449,22 +452,12 @@ scanblock(byte *b, uintptr n, byte *ptrmask)
// For 8-byte objects we use non-atomic store, if the other
// quadruple is already marked. Otherwise we resort to CAS
// loop for marking.
bits8 = xbits>>(shift&~7);
if((bits8&(bitMask|(bitMask<<gcBits))) != (bitBoundary|(bitBoundary<<gcBits)) ||
if((xbits&(bitMask|(bitMask<<gcBits))) != (bitBoundary|(bitBoundary<<gcBits)) ||
work.nproc == 1)
((uint8*)bitp)[shift/8] = bits8 | (bitMarked<<(shift&7));
else {
for(;;) {
if(runtime·casp((void**)bitp, (void*)xbits, (void*)(xbits|(bitMarked<<shift))))
break;
xbits = *bitp;
bits = (xbits>>shift) & bitMask;
if((bits&bitMarked) != 0)
break;
}
if((bits&bitMarked) != 0)
continue;
}
*bitp = xbits | (bitMarked<<shift);
else
runtime·atomicor8(bitp, bitMarked<<shift);
if(((xbits>>(shift+2))&BitsMask) == BitsDead)
continue; // noscan object
......@@ -901,9 +894,9 @@ bool
runtime·MSpan_Sweep(MSpan *s, bool preserve)
{
int32 cl, n, npages, nfree;
uintptr size, off, *bitp, shift, xbits, bits;
uintptr size, off, step;
uint32 sweepgen;
byte *p;
byte *p, *bitp, shift, xbits, bits;
MCache *c;
byte *arena_start;
MLink head, *end, *link;
......@@ -939,8 +932,8 @@ runtime·MSpan_Sweep(MSpan *s, bool preserve)
// Mark any free objects in this span so we don't collect them.
for(link = s->freelist; link != nil; link = link->next) {
off = (uintptr*)link - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
*bitp |= bitMarked<<shift;
}
......@@ -951,8 +944,8 @@ runtime·MSpan_Sweep(MSpan *s, bool preserve)
// A finalizer can be set for an inner byte of an object, find object beginning.
p = (byte*)(s->start << PageShift) + special->offset/size*size;
off = (uintptr*)p - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
bits = (*bitp>>shift) & bitMask;
if((bits&bitMarked) == 0) {
// Find the exact byte for which the special was setup
......@@ -977,10 +970,27 @@ runtime·MSpan_Sweep(MSpan *s, bool preserve)
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
p = (byte*)(s->start << PageShift);
// Find bits for the beginning of the span.
off = (uintptr*)p - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = 0;
step = size/(PtrSize*wordsPerBitmapByte);
// Rewind to the previous quadruple as we move to the next
// in the beginning of the loop.
bitp += step;
if(step == 0) {
// 8-byte objects.
bitp++;
shift = gcBits;
}
for(; n > 0; n--, p += size) {
off = (uintptr*)p - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
bitp -= step;
if(step == 0) {
if(shift != 0)
bitp--;
shift = gcBits - shift;
}
xbits = *bitp;
bits = (xbits>>shift) & bitMask;
......@@ -1759,8 +1769,8 @@ runtime·wakefing(void)
static byte*
unrollgcprog1(byte *mask, byte *prog, uintptr *ppos, bool inplace, bool sparse)
{
uintptr *b, off, shift, pos, siz, i;
byte *arena_start, *prog1, v;
uintptr pos, siz, i, off;
byte *arena_start, *prog1, v, *bitp, shift;
arena_start = runtime·mheap.arena_start;
pos = *ppos;
......@@ -1777,11 +1787,11 @@ unrollgcprog1(byte *mask, byte *prog, uintptr *ppos, bool inplace, bool sparse)
if(inplace) {
// Store directly into GC bitmap.
off = (uintptr*)(mask+pos) - (uintptr*)arena_start;
b = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
if((shift%8)==0)
((byte*)b)[shift/8] = 0;
((byte*)b)[shift/8] |= v<<((shift%8)+2);
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
if(shift==0)
*bitp = 0;
*bitp |= v<<(shift+2);
pos += PtrSize;
} else if(sparse) {
// 4-bits per word
......@@ -1847,8 +1857,8 @@ unrollglobgcprog(byte *prog, uintptr size)
void
runtime·unrollgcproginplace_m(void)
{
uintptr size, size0, *b, off, shift, pos;
byte *arena_start, *prog;
uintptr size, size0, pos, off;
byte *arena_start, *prog, *bitp, shift;
Type *typ;
void *v;
......@@ -1866,15 +1876,15 @@ runtime·unrollgcproginplace_m(void)
// Mark first word as bitAllocated.
arena_start = runtime·mheap.arena_start;
off = (uintptr*)v - (uintptr*)arena_start;
b = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
*b |= bitBoundary<<shift;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
*bitp |= bitBoundary<<shift;
// Mark word after last as BitsDead.
if(size0 < size) {
off = (uintptr*)((byte*)v + size0) - (uintptr*)arena_start;
b = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
*b &= ~(bitPtrMask<<shift) | ((uintptr)BitsDead<<(shift+2));
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
*bitp &= ~(bitPtrMask<<shift) | ((uintptr)BitsDead<<(shift+2));
}
}
......@@ -1916,60 +1926,67 @@ runtime·unrollgcprog_m(void)
void
runtime·markspan(void *v, uintptr size, uintptr n, bool leftover)
{
uintptr *b, *b0, off, shift, x;
byte *p;
uintptr i, off, step;
byte *b;
if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markspan: bad pointer");
p = v;
if(leftover) // mark a boundary just past end of last block too
n++;
b0 = nil;
x = 0;
for(; n-- > 0; p += size) {
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
if(b0 != b) {
if(b0 != nil)
*b0 = x;
b0 = b;
x = 0;
}
x |= (bitBoundary<<shift) | ((uintptr)BitsDead<<(shift+2));
// Find bits of the beginning of the span.
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
if((off%wordsPerBitmapByte) != 0)
runtime·throw("markspan: unaligned length");
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap byte has bits for only
// one span, so no other goroutines are changing these bitmap words.
if(size == PtrSize) {
// Possible only on 64-bits (minimal size class is 8 bytes).
// Poor man's memset(0x11).
if(0x11 != ((bitBoundary+BitsDead)<<gcBits) + (bitBoundary+BitsDead))
runtime·throw("markspan: bad bits");
if((n%(wordsPerBitmapByte*PtrSize)) != 0)
runtime·throw("markspan: unaligned length");
b = b - n/wordsPerBitmapByte + 1; // find first byte
if(((uintptr)b%PtrSize) != 0)
runtime·throw("markspan: unaligned pointer");
for(i = 0; i != n; i += wordsPerBitmapByte*PtrSize, b += PtrSize)
*(uintptr*)b = (uintptr)0x1111111111111111ULL; // bitBoundary+BitsDead
return;
}
*b0 = x;
if(leftover)
n++; // mark a boundary just past end of last block too
step = size/(PtrSize*wordsPerBitmapByte);
for(i = 0; i != n; i++, b -= step)
*b = bitBoundary|(BitsDead<<2);
}
// unmark the span of memory at v of length n bytes.
void
runtime·unmarkspan(void *v, uintptr n)
{
uintptr *p, *b, off;
uintptr off;
byte *b;
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markspan: bad pointer");
p = v;
off = p - (uintptr*)runtime·mheap.arena_start; // word offset
if((off % wordsPerBitmapWord) != 0)
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
if((off % (PtrSize*wordsPerBitmapByte)) != 0)
runtime·throw("markspan: unaligned pointer");
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
n /= PtrSize;
if(n%wordsPerBitmapWord != 0)
if(n%(PtrSize*wordsPerBitmapByte) != 0)
runtime·throw("unmarkspan: unaligned length");
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
n /= wordsPerBitmapWord;
runtime·memclr((byte*)(b - n + 1), n*PtrSize);
n /= wordsPerBitmapByte;
runtime·memclr(b - n + 1, n);
}
void
......@@ -1983,7 +2000,7 @@ runtime·MHeap_MapBits(MHeap *h)
};
uintptr n;
n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
n = (h->arena_used - h->arena_start) / (PtrSize*wordsPerBitmapByte);
n = ROUND(n, bitmapChunk);
n = ROUND(n, PhysPageSize);
if(h->bitmap_mapped >= n)
......@@ -2011,8 +2028,8 @@ void
runtime·getgcmask(byte *p, Type *t, byte **mask, uintptr *len)
{
Stkframe frame;
uintptr i, n, off, bits, shift, *b;
byte *base;
uintptr i, n, off;
byte *base, bits, shift, *b;
*mask = nil;
*len = 0;
......@@ -2047,8 +2064,8 @@ runtime·getgcmask(byte *p, Type *t, byte **mask, uintptr *len)
*mask = runtime·mallocgc(*len, nil, 0);
for(i = 0; i < n; i += PtrSize) {
off = (uintptr*)(base+i) - (uintptr*)runtime·mheap.arena_start;
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
bits = (*b >> (shift+2))&BitsMask;
(*mask)[i/PtrSize] = bits;
}
......
......@@ -8,8 +8,8 @@ enum {
ScanStackByFrames = 1,
// Four bits per word (see #defines below).
wordsPerBitmapWord = sizeof(void*)*8/4,
gcBits = 4,
wordsPerBitmapByte = 8/gcBits,
// GC type info programs.
// The programs allow to store type info required for GC in a compact form.
......
......@@ -913,6 +913,7 @@ void runtime·atomicstore64(uint64 volatile*, uint64);
uint64 runtime·atomicload64(uint64 volatile*);
void* runtime·atomicloadp(void* volatile*);
void runtime·atomicstorep(void* volatile*, void*);
void runtime·atomicor8(byte volatile*, byte);
void runtime·setg(G*);
void runtime·newextram(void);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment