Commit 3c208088 authored by David Anderson's avatar David Anderson Committed by Mikio Hara

bpf: new package to assemble and disassemble Berkeley Packet Filter programs.

The package currently implements the operations defined by
https://www.kernel.org/doc/Documentation/networking/filter.txt , which
comprises the base BPF virtual machine plus the Linux kernel's extension
opcodes.

Updates golang/go#14982

Change-Id: Iafb43d80e067040e60465a9bfb7d5f2ca90cc2ae
Reviewed-on: https://go-review.googlesource.com/21212Reviewed-by: 's avatarMikio Hara <mikioh.mikioh@gmail.com>
parent 1600a4cd
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bpf
import "fmt"
// Assemble converts insts into raw instructions suitable for loading
// into a BPF virtual machine.
//
// Currently, no optimization is attempted, the assembled program flow
// is exactly as provided.
func Assemble(insts []Instruction) ([]RawInstruction, error) {
ret := make([]RawInstruction, len(insts))
var err error
for i, inst := range insts {
ret[i], err = inst.Assemble()
if err != nil {
return nil, fmt.Errorf("assembling instruction %d: %s", i+1, err)
}
}
return ret, nil
}
// Disassemble attempts to parse raw back into
// Instructions. Unrecognized RawInstructions are assumed to be an
// extension not implemented by this package, and are passed through
// unchanged to the output. The allDecoded value reports whether insts
// contains no RawInstructions.
func Disassemble(raw []RawInstruction) (insts []Instruction, allDecoded bool) {
insts = make([]Instruction, len(raw))
allDecoded = true
for i, r := range raw {
insts[i] = r.Disassemble()
if _, ok := insts[i].(RawInstruction); ok {
allDecoded = false
}
}
return insts, allDecoded
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bpf
// A Register is a register of the BPF virtual machine.
type Register uint16
const (
// RegA is the accumulator register. RegA is always the
// destination register of ALU operations.
RegA Register = iota
// RegX is the indirection register, used by LoadIndirect
// operations.
RegX
)
// An ALUOp is an arithmetic or logic operation.
type ALUOp uint16
// ALU binary operation types.
const (
ALUOpAdd ALUOp = iota << 4
ALUOpSub
ALUOpMul
ALUOpDiv
ALUOpOr
ALUOpAnd
ALUOpShiftLeft
ALUOpShiftRight
aluOpNeg // Not exported because it's the only unary ALU operation, and gets its own instruction type.
ALUOpMod
ALUOpXor
)
// A JumpTest is a comparison operator used in conditional jumps.
type JumpTest uint16
// Supported operators for conditional jumps.
const (
// K == A
JumpEqual JumpTest = iota
// K != A
JumpNotEqual
// K > A
JumpGreaterThan
// K < A
JumpLessThan
// K >= A
JumpGreaterOrEqual
// K <= A
JumpLessOrEqual
// K & A != 0
JumpBitsSet
// K & A == 0
JumpBitsNotSet
)
// An Extension is a function call provided by the kernel that
// performs advanced operations that are expensive or impossible
// within the BPF virtual machine.
//
// Extensions are only implemented by the Linux kernel.
//
// TODO: should we prune this list? Some of these extensions seem
// either broken or near-impossible to use correctly, whereas other
// (len, random, ifindex) are quite useful.
type Extension int
// Extension functions available in the Linux kernel.
const (
// ExtLen returns the length of the packet.
ExtLen Extension = 1
// ExtProto returns the packet's L3 protocol type.
ExtProto = 0
// ExtType returns the packet's type (skb->pkt_type in the kernel)
//
// TODO: better documentation. How nice an API do we want to
// provide for these esoteric extensions?
ExtType = 4
// ExtPayloadOffset returns the offset of the packet payload, or
// the first protocol header that the kernel does not know how to
// parse.
ExtPayloadOffset = 52
// ExtInterfaceIndex returns the index of the interface on which
// the packet was received.
ExtInterfaceIndex = 8
// ExtNetlinkAttr returns the netlink attribute of type X at
// offset A.
ExtNetlinkAttr = 12
// ExtNetlinkAttrNested returns the nested netlink attribute of
// type X at offset A.
ExtNetlinkAttrNested = 16
// ExtMark returns the packet's mark value.
ExtMark = 20
// ExtQueue returns the packet's assigned hardware queue.
ExtQueue = 24
// ExtLinkLayerType returns the packet's hardware address type
// (e.g. Ethernet, Infiniband).
ExtLinkLayerType = 28
// ExtRXHash returns the packets receive hash.
//
// TODO: figure out what this rxhash actually is.
ExtRXHash = 32
// ExtCPUID returns the ID of the CPU processing the current
// packet.
ExtCPUID = 36
// ExtVLANTag returns the packet's VLAN tag.
ExtVLANTag = 44
// ExtVLANTagPresent returns non-zero if the packet has a VLAN
// tag.
//
// TODO: I think this might be a lie: it reads bit 0x1000 of the
// VLAN header, which changed meaning in recent revisions of the
// spec - this extension may now return meaningless information.
ExtVLANTagPresent = 48
// ExtVLANProto returns 0x8100 if the frame has a VLAN header,
// 0x88a8 if the frame has a "Q-in-Q" double VLAN header, or some
// other value if no VLAN information is present.
ExtVLANProto = 60
// ExtRand returns a uniformly random uint32.
ExtRand = 56
)
// The following gives names to various bit patterns used in opcode construction.
const opClsMask uint16 = 0x7
const (
// +---------------+-----------------+---+---+---+
// | AddrMode (3b) | LoadWidth (2b) | 0 | 0 | 0 |
// +---------------+-----------------+---+---+---+
opClsLoadA uint16 = iota
// +---------------+-----------------+---+---+---+
// | AddrMode (3b) | LoadWidth (2b) | 0 | 0 | 1 |
// +---------------+-----------------+---+---+---+
opClsLoadX
// +---+---+---+---+---+---+---+---+
// | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
// +---+---+---+---+---+---+---+---+
opClsStoreA
// +---+---+---+---+---+---+---+---+
// | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
// +---+---+---+---+---+---+---+---+
opClsStoreX
// +---------------+-----------------+---+---+---+
// | Operator (4b) | OperandSrc (1b) | 1 | 0 | 0 |
// +---------------+-----------------+---+---+---+
opClsALU
// +-----------------------------+---+---+---+---+
// | TestOperator (4b) | 0 | 1 | 0 | 1 |
// +-----------------------------+---+---+---+---+
opClsJump
// +---+-------------------------+---+---+---+---+
// | 0 | 0 | 0 | RetSrc (1b) | 0 | 1 | 1 | 0 |
// +---+-------------------------+---+---+---+---+
opClsReturn
// +---+-------------------------+---+---+---+---+
// | 0 | 0 | 0 | TXAorTAX (1b) | 0 | 1 | 1 | 1 |
// +---+-------------------------+---+---+---+---+
opClsMisc
)
const (
opAddrModeImmediate uint16 = iota << 5
opAddrModeAbsolute
opAddrModeIndirect
opAddrModeScratch
// These are actually extensions, not addressing modes.
opAddrModePacketLen
opAddrModeIPv4HeaderLen
)
const (
opLoadWidth4 uint16 = iota << 3
opLoadWidth2
opLoadWidth1
)
// Operator defined by ALUOp*
const opALUOpMask = 0xf0
const opALUSrcMask = 0x08
const (
opALUSrcConstant uint16 = iota << 3
opALUSrcX
)
const (
opJumpAlways = iota << 4
opJumpEqual
opJumpGT
opJumpGE
opJumpSet
)
const (
opRetSrcConstant uint16 = iota << 4
opRetSrcA
)
const (
opMiscTAX = 0x00
opMiscTXA = 0x80
)
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bpf implements marshalling and unmarshalling of programs
// for the Berkeley Packet Filter virtual machine.
//
// TODO: brief overview of the BPF virtual machine (registers, scratch, packet access, execution constraints)
//
// TODO: simple BPF program examples
package bpf // import "golang.org/x/net/bpf"
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bpf
import "fmt"
// An Instruction is one instruction executed by the BPF virtual
// machine.
type Instruction interface {
// Assemble assembles the Instruction into a RawInstruction.
Assemble() (RawInstruction, error)
}
// A RawInstruction is a raw BPF virtual machine instruction.
type RawInstruction struct {
// Operation to execute.
Op uint16
// For conditional jump instructions, the number of instructions
// to skip if the condition is true/false.
Jt uint8
Jf uint8
// Constant parameter. The meaning depends on the Op.
K uint32
}
// Assemble implements the Instruction Assemble method.
func (ri RawInstruction) Assemble() (RawInstruction, error) { return ri, nil }
// Disassemble parses ri into an Instruction and returns it. If ri is
// not recognized by this package, ri itself is returned.
func (ri RawInstruction) Disassemble() Instruction {
switch ri.Op {
case opClsLoadA | opLoadWidth4 | opAddrModeImmediate:
return LoadConstant{Dst: RegA, Val: ri.K}
case opClsLoadX | opLoadWidth4 | opAddrModeImmediate:
return LoadConstant{Dst: RegX, Val: ri.K}
case opClsLoadA | opLoadWidth4 | opAddrModeScratch:
if ri.K > 15 {
return ri
}
return LoadScratch{Dst: RegA, N: int(ri.K)}
case opClsLoadX | opLoadWidth4 | opAddrModeScratch:
if ri.K > 15 {
return ri
}
return LoadScratch{Dst: RegX, N: int(ri.K)}
case opClsLoadA | opLoadWidth4 | opAddrModeAbsolute:
ext := Extension(uint32(ri.K) + 0x1000)
switch ext {
case ExtProto, ExtType, ExtPayloadOffset, ExtInterfaceIndex, ExtNetlinkAttr, ExtNetlinkAttrNested, ExtMark, ExtQueue, ExtLinkLayerType, ExtRXHash, ExtCPUID, ExtVLANTag, ExtVLANTagPresent, ExtVLANProto, ExtRand:
return LoadExtension{Num: ext}
default:
return LoadAbsolute{Off: ri.K, Size: 4}
}
case opClsLoadA | opLoadWidth2 | opAddrModeAbsolute:
return LoadAbsolute{Off: ri.K, Size: 2}
case opClsLoadA | opLoadWidth1 | opAddrModeAbsolute:
return LoadAbsolute{Off: ri.K, Size: 1}
case opClsLoadA | opLoadWidth4 | opAddrModeIndirect:
return LoadIndirect{Off: ri.K, Size: 4}
case opClsLoadA | opLoadWidth2 | opAddrModeIndirect:
return LoadIndirect{Off: ri.K, Size: 2}
case opClsLoadA | opLoadWidth1 | opAddrModeIndirect:
return LoadIndirect{Off: ri.K, Size: 1}
case opClsLoadX | opLoadWidth1 | opAddrModeIPv4HeaderLen:
return LoadIPv4HeaderLen{Off: ri.K}
case opClsLoadA | opLoadWidth4 | opAddrModePacketLen:
return LoadExtension{Num: ExtLen}
case opClsStoreA:
if ri.K > 15 {
return ri
}
return StoreScratch{Src: RegA, N: int(ri.K)}
case opClsStoreX:
if ri.K > 15 {
return ri
}
return StoreScratch{Src: RegX, N: int(ri.K)}
case opClsALU | uint16(aluOpNeg):
return NegateA{}
case opClsJump | opJumpAlways:
return Jump{Skip: ri.K}
case opClsJump | opJumpEqual:
return JumpIf{
Cond: JumpEqual,
Val: ri.K,
SkipTrue: ri.Jt,
SkipFalse: ri.Jf,
}
case opClsJump | opJumpGT:
return JumpIf{
Cond: JumpGreaterThan,
Val: ri.K,
SkipTrue: ri.Jt,
SkipFalse: ri.Jf,
}
case opClsJump | opJumpGE:
return JumpIf{
Cond: JumpGreaterOrEqual,
Val: ri.K,
SkipTrue: ri.Jt,
SkipFalse: ri.Jf,
}
case opClsJump | opJumpSet:
return JumpIf{
Cond: JumpBitsSet,
Val: ri.K,
SkipTrue: ri.Jt,
SkipFalse: ri.Jf,
}
case opClsReturn | opRetSrcA:
return RetA{}
case opClsReturn | opRetSrcConstant:
return RetConstant{Val: ri.K}
case opClsMisc | opMiscTXA:
return TXA{}
case opClsMisc | opMiscTAX:
return TAX{}
}
// ALU operations require bitmasking to decode, so are done
// outside the main switch.
if ri.Op&opClsMask != opClsALU {
return ri
}
op := ALUOp(ri.Op & opALUOpMask)
switch op {
case ALUOpAdd, ALUOpSub, ALUOpMul, ALUOpDiv, ALUOpOr, ALUOpAnd, ALUOpShiftLeft, ALUOpShiftRight, ALUOpMod, ALUOpXor:
default:
return ri
}
if ri.Op&opALUSrcMask != 0 {
return ALUOpX{Op: op}
}
return ALUOpConstant{Op: op, Val: ri.K}
}
// LoadConstant loads Val into register Dst.
type LoadConstant struct {
Dst Register
Val uint32
}
// Assemble implements the Instruction Assemble method.
func (a LoadConstant) Assemble() (RawInstruction, error) {
return assembleLoad(a.Dst, 4, opAddrModeImmediate, a.Val)
}
// LoadScratch loads scratch[N] into register Dst.
type LoadScratch struct {
Dst Register
N int // 0-15
}
// Assemble implements the Instruction Assemble method.
func (a LoadScratch) Assemble() (RawInstruction, error) {
if a.N < 0 || a.N > 15 {
return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
}
return assembleLoad(a.Dst, 4, opAddrModeScratch, uint32(a.N))
}
// LoadAbsolute loads packet[Off:Off+Size] as an integer value into
// register A.
type LoadAbsolute struct {
Off uint32
Size int // 1, 2 or 4
}
// Assemble implements the Instruction Assemble method.
func (a LoadAbsolute) Assemble() (RawInstruction, error) {
return assembleLoad(RegA, a.Size, opAddrModeAbsolute, a.Off)
}
// LoadIndirect loads packet[X+Off:X+Off+Size] as an integer value
// into register A.
type LoadIndirect struct {
Off uint32
Size int // 1, 2 or 4
}
// Assemble implements the Instruction Assemble method.
func (a LoadIndirect) Assemble() (RawInstruction, error) {
return assembleLoad(RegA, a.Size, opAddrModeIndirect, a.Off)
}
// LoadIPv4HeaderLen loads into register X the length of the IPv4
// header whose first byte is packet[Off].
type LoadIPv4HeaderLen struct {
Off uint32
}
// Assemble implements the Instruction Assemble method.
func (a LoadIPv4HeaderLen) Assemble() (RawInstruction, error) {
return assembleLoad(RegX, 1, opAddrModeIPv4HeaderLen, a.Off)
}
// LoadExtension invokes a linux-specific extension and stores the
// result in register A.
type LoadExtension struct {
Num Extension
}
// Assemble implements the Instruction Assemble method.
func (a LoadExtension) Assemble() (RawInstruction, error) {
if a.Num == ExtLen {
return assembleLoad(RegA, 4, opAddrModePacketLen, 0)
}
return assembleLoad(RegA, 4, opAddrModeAbsolute, uint32(-0x1000+a.Num))
}
// StoreScratch stores register Src into scratch[N].
type StoreScratch struct {
Src Register
N int // 0-15
}
// Assemble implements the Instruction Assemble method.
func (a StoreScratch) Assemble() (RawInstruction, error) {
if a.N < 0 || a.N > 15 {
return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
}
var op uint16
switch a.Src {
case RegA:
op = opClsStoreA
case RegX:
op = opClsStoreX
default:
return RawInstruction{}, fmt.Errorf("invalid source register %v", a.Src)
}
return RawInstruction{
Op: op,
K: uint32(a.N),
}, nil
}
// ALUOpConstant executes A = A <Op> Val.
type ALUOpConstant struct {
Op ALUOp
Val uint32
}
// Assemble implements the Instruction Assemble method.
func (a ALUOpConstant) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsALU | opALUSrcConstant | uint16(a.Op),
K: a.Val,
}, nil
}
// ALUOpX executes A = A <Op> X
type ALUOpX struct {
Op ALUOp
}
// Assemble implements the Instruction Assemble method.
func (a ALUOpX) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsALU | opALUSrcX | uint16(a.Op),
}, nil
}
// NegateA executes A = -A.
type NegateA struct{}
// Assemble implements the Instruction Assemble method.
func (a NegateA) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsALU | uint16(aluOpNeg),
}, nil
}
// Jump skips the following Skip instructions in the program.
type Jump struct {
Skip uint32
}
// Assemble implements the Instruction Assemble method.
func (a Jump) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsJump | opJumpAlways,
K: a.Skip,
}, nil
}
// JumpIf skips the following Skip instructions in the program if A
// <Cond> Val is true.
type JumpIf struct {
Cond JumpTest
Val uint32
SkipTrue uint8
SkipFalse uint8
}
// Assemble implements the Instruction Assemble method.
func (a JumpIf) Assemble() (RawInstruction, error) {
var (
cond uint16
flip bool
)
switch a.Cond {
case JumpEqual:
cond = opJumpEqual
case JumpNotEqual:
cond, flip = opJumpEqual, true
case JumpGreaterThan:
cond = opJumpGT
case JumpLessThan:
cond, flip = opJumpGE, true
case JumpGreaterOrEqual:
cond = opJumpGE
case JumpLessOrEqual:
cond, flip = opJumpGT, true
case JumpBitsSet:
cond = opJumpSet
case JumpBitsNotSet:
cond, flip = opJumpSet, true
default:
return RawInstruction{}, fmt.Errorf("unknown JumpTest %v", a.Cond)
}
jt, jf := a.SkipTrue, a.SkipFalse
if flip {
jt, jf = jf, jt
}
return RawInstruction{
Op: opClsJump | cond,
Jt: jt,
Jf: jf,
K: a.Val,
}, nil
}
// RetA exits the BPF program, returning the value of register A.
type RetA struct{}
// Assemble implements the Instruction Assemble method.
func (a RetA) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsReturn | opRetSrcA,
}, nil
}
// RetConstant exits the BPF program, returning a constant value.
type RetConstant struct {
Val uint32
}
// Assemble implements the Instruction Assemble method.
func (a RetConstant) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsReturn | opRetSrcConstant,
K: a.Val,
}, nil
}
// TXA copies the value of register X to register A.
type TXA struct{}
// Assemble implements the Instruction Assemble method.
func (a TXA) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsMisc | opMiscTXA,
}, nil
}
// TAX copies the value of register A to register X.
type TAX struct{}
// Assemble implements the Instruction Assemble method.
func (a TAX) Assemble() (RawInstruction, error) {
return RawInstruction{
Op: opClsMisc | opMiscTAX,
}, nil
}
func assembleLoad(dst Register, loadSize int, mode uint16, k uint32) (RawInstruction, error) {
var (
cls uint16
sz uint16
)
switch dst {
case RegA:
cls = opClsLoadA
case RegX:
cls = opClsLoadX
default:
return RawInstruction{}, fmt.Errorf("invalid target register %v", dst)
}
switch loadSize {
case 1:
sz = opLoadWidth1
case 2:
sz = opLoadWidth2
case 4:
sz = opLoadWidth4
default:
return RawInstruction{}, fmt.Errorf("invalid load byte length %d", sz)
}
return RawInstruction{
Op: cls | sz | mode,
K: k,
}, nil
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bpf
import (
"io/ioutil"
"reflect"
"strconv"
"strings"
"testing"
)
// This is a direct translation of the program in
// testdata/all_instructions.txt.
var allInstructions = []Instruction{
LoadConstant{Dst: RegA, Val: 42},
LoadConstant{Dst: RegX, Val: 42},
LoadScratch{Dst: RegA, N: 3},
LoadScratch{Dst: RegX, N: 3},
LoadAbsolute{Off: 42, Size: 1},
LoadAbsolute{Off: 42, Size: 2},
LoadAbsolute{Off: 42, Size: 4},
LoadIndirect{Off: 42, Size: 1},
LoadIndirect{Off: 42, Size: 2},
LoadIndirect{Off: 42, Size: 4},
LoadIPv4HeaderLen{Off: 42},
LoadExtension{Num: ExtLen},
LoadExtension{Num: ExtProto},
LoadExtension{Num: ExtType},
LoadExtension{Num: ExtRand},
StoreScratch{Src: RegA, N: 3},
StoreScratch{Src: RegX, N: 3},
ALUOpConstant{Op: ALUOpAdd, Val: 42},
ALUOpConstant{Op: ALUOpSub, Val: 42},
ALUOpConstant{Op: ALUOpMul, Val: 42},
ALUOpConstant{Op: ALUOpDiv, Val: 42},
ALUOpConstant{Op: ALUOpOr, Val: 42},
ALUOpConstant{Op: ALUOpAnd, Val: 42},
ALUOpConstant{Op: ALUOpShiftLeft, Val: 42},
ALUOpConstant{Op: ALUOpShiftRight, Val: 42},
ALUOpConstant{Op: ALUOpMod, Val: 42},
ALUOpConstant{Op: ALUOpXor, Val: 42},
ALUOpX{Op: ALUOpAdd},
ALUOpX{Op: ALUOpSub},
ALUOpX{Op: ALUOpMul},
ALUOpX{Op: ALUOpDiv},
ALUOpX{Op: ALUOpOr},
ALUOpX{Op: ALUOpAnd},
ALUOpX{Op: ALUOpShiftLeft},
ALUOpX{Op: ALUOpShiftRight},
ALUOpX{Op: ALUOpMod},
ALUOpX{Op: ALUOpXor},
NegateA{},
Jump{Skip: 10},
JumpIf{Cond: JumpEqual, Val: 42, SkipTrue: 8, SkipFalse: 9},
JumpIf{Cond: JumpNotEqual, Val: 42, SkipTrue: 8},
JumpIf{Cond: JumpLessThan, Val: 42, SkipTrue: 7},
JumpIf{Cond: JumpLessOrEqual, Val: 42, SkipTrue: 6},
JumpIf{Cond: JumpGreaterThan, Val: 42, SkipTrue: 4, SkipFalse: 5},
JumpIf{Cond: JumpGreaterOrEqual, Val: 42, SkipTrue: 3, SkipFalse: 4},
JumpIf{Cond: JumpBitsSet, Val: 42, SkipTrue: 2, SkipFalse: 3},
TAX{},
TXA{},
RetA{},
RetConstant{Val: 42},
}
var allInstructionsExpected = "testdata/all_instructions.bpf"
// Check that we produce the same output as the canonical bpf_asm
// linux kernel tool.
func TestInterop(t *testing.T) {
out, err := Assemble(allInstructions)
if err != nil {
t.Fatalf("assembly of allInstructions program failed: %s", err)
}
t.Logf("Assembled program is %d instructions long", len(out))
bs, err := ioutil.ReadFile(allInstructionsExpected)
if err != nil {
t.Fatalf("reading %s: %s", allInstructionsExpected, err)
}
// First statement is the number of statements, last statement is
// empty. We just ignore both and rely on slice length.
stmts := strings.Split(string(bs), ",")
if len(stmts)-2 != len(out) {
t.Fatalf("test program lengths don't match: %s has %d, Go implementation has %d", allInstructionsExpected, len(stmts)-2, len(allInstructions))
}
for i, stmt := range stmts[1 : len(stmts)-2] {
nums := strings.Split(stmt, " ")
if len(nums) != 4 {
t.Fatalf("malformed instruction %d in %s: %s", i+1, allInstructionsExpected, stmt)
}
actual := out[i]
op, err := strconv.ParseUint(nums[0], 10, 16)
if err != nil {
t.Fatalf("malformed opcode %s in instruction %d of %s", nums[0], i+1, allInstructionsExpected)
}
if actual.Op != uint16(op) {
t.Errorf("opcode mismatch on instruction %d (%#v): got 0x%02x, want 0x%02x", i+1, allInstructions[i], actual.Op, op)
}
jt, err := strconv.ParseUint(nums[1], 10, 8)
if err != nil {
t.Fatalf("malformed jt offset %s in instruction %d of %s", nums[1], i+1, allInstructionsExpected)
}
if actual.Jt != uint8(jt) {
t.Errorf("jt mismatch on instruction %d (%#v): got %d, want %d", i+1, allInstructions[i], actual.Jt, jt)
}
jf, err := strconv.ParseUint(nums[2], 10, 8)
if err != nil {
t.Fatalf("malformed jf offset %s in instruction %d of %s", nums[2], i+1, allInstructionsExpected)
}
if actual.Jf != uint8(jf) {
t.Errorf("jf mismatch on instruction %d (%#v): got %d, want %d", i+1, allInstructions[i], actual.Jf, jf)
}
k, err := strconv.ParseUint(nums[3], 10, 32)
if err != nil {
t.Fatalf("malformed constant %s in instruction %d of %s", nums[3], i+1, allInstructionsExpected)
}
if actual.K != uint32(k) {
t.Errorf("constant mismatch on instruction %d (%#v): got %d, want %d", i+1, allInstructions[i], actual.K, k)
}
}
}
// Check that assembly and disassembly match each other.
//
// Because we offer "fake" jump conditions that don't appear in the
// machine code, disassembly won't be a 1:1 match with the original
// source, although the behavior will be identical. However,
// reassembling the disassembly should produce an identical program.
func TestAsmDisasm(t *testing.T) {
prog1, err := Assemble(allInstructions)
if err != nil {
t.Fatalf("assembly of allInstructions program failed: %s", err)
}
t.Logf("Assembled program is %d instructions long", len(prog1))
src, allDecoded := Disassemble(prog1)
if !allDecoded {
t.Errorf("Disassemble(Assemble(allInstructions)) produced unrecognized instructions:")
for i, inst := range src {
if r, ok := inst.(RawInstruction); ok {
t.Logf(" insn %d, %#v --> %#v", i+1, allInstructions[i], r)
}
}
}
prog2, err := Assemble(src)
if err != nil {
t.Fatalf("assembly of Disassemble(Assemble(allInstructions)) failed: %s", err)
}
if len(prog2) != len(prog1) {
t.Fatalf("disassembly changed program size: %d insns before, %d insns after", len(prog1), len(prog2))
}
if !reflect.DeepEqual(prog1, prog2) {
t.Errorf("program mutated by disassembly:")
for i := range prog2 {
if !reflect.DeepEqual(prog1[i], prog2[i]) {
t.Logf(" insn %d, s: %#v, p1: %#v, p2: %#v", i+1, allInstructions[i], prog1[i], prog2[i])
}
}
}
}
50,0 0 0 42,1 0 0 42,96 0 0 3,97 0 0 3,48 0 0 42,40 0 0 42,32 0 0 42,80 0 0 42,72 0 0 42,64 0 0 42,177 0 0 42,128 0 0 0,32 0 0 4294963200,32 0 0 4294963204,32 0 0 4294963256,2 0 0 3,3 0 0 3,4 0 0 42,20 0 0 42,36 0 0 42,52 0 0 42,68 0 0 42,84 0 0 42,100 0 0 42,116 0 0 42,148 0 0 42,164 0 0 42,12 0 0 0,28 0 0 0,44 0 0 0,60 0 0 0,76 0 0 0,92 0 0 0,108 0 0 0,124 0 0 0,156 0 0 0,172 0 0 0,132 0 0 0,5 0 0 10,21 8 9 42,21 0 8 42,53 0 7 42,37 0 6 42,37 4 5 42,53 3 4 42,69 2 3 42,7 0 0 0,135 0 0 0,22 0 0 0,6 0 0 0,
# This filter is compiled to all_instructions.bpf by the `bpf_asm`
# tool, which can be found in the linux kernel source tree under
# tools/net.
# Load immediate
ld #42
ldx #42
# Load scratch
ld M[3]
ldx M[3]
# Load absolute
ldb [42]
ldh [42]
ld [42]
# Load indirect
ldb [x + 42]
ldh [x + 42]
ld [x + 42]
# Load IPv4 header length
ldx 4*([42]&0xf)
# Run extension function
ld #len
ld #proto
ld #type
ld #rand
# Store scratch
st M[3]
stx M[3]
# A <op> constant
add #42
sub #42
mul #42
div #42
or #42
and #42
lsh #42
rsh #42
mod #42
xor #42
# A <op> X
add x
sub x
mul x
div x
or x
and x
lsh x
rsh x
mod x
xor x
# !A
neg
# Jumps
ja end
jeq #42,prev,end
jne #42,end
jlt #42,end
jle #42,end
jgt #42,prev,end
jge #42,prev,end
jset #42,prev,end
# Register transfers
tax
txa
# Returns
prev: ret a
end: ret #42
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment