Commit 07612b8d authored by Robert Griesemer's avatar Robert Griesemer

math/big: make Rat.Denom() always return a reference

The documentation says so, but in the case of a normalized
integral Rat, the denominator was a new value. Changed the
internal representation to use an Int to represent the
denominator (with the sign ignored), so a reference to it
can always be returned.

Clarified documentation and added test cases.

Fixes #3521.

R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/6237045
parent 3d3b4906
......@@ -16,8 +16,10 @@ import (
// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
type Rat struct {
a Int
b nat // len(b) == 0 acts like b == 1
// To make zero values for Rat work w/o initialization,
// a zero value of b (len(b) == 0) acts like b == 1.
// a.neg determines the sign of the Rat, b.neg is ignored.
a, b Int
}
// NewRat creates a new Rat with numerator a and denominator b.
......@@ -36,7 +38,7 @@ func (z *Rat) SetFrac(a, b *Int) *Rat {
babs = nat(nil).set(babs) // make a copy
}
z.a.abs = z.a.abs.set(a.abs)
z.b = z.b.set(babs)
z.b.abs = z.b.abs.set(babs)
return z.norm()
}
......@@ -50,21 +52,21 @@ func (z *Rat) SetFrac64(a, b int64) *Rat {
b = -b
z.a.neg = !z.a.neg
}
z.b = z.b.setUint64(uint64(b))
z.b.abs = z.b.abs.setUint64(uint64(b))
return z.norm()
}
// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
z.a.Set(x)
z.b = z.b.make(0)
z.b.abs = z.b.abs.make(0)
return z
}
// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
z.a.SetInt64(x)
z.b = z.b.make(0)
z.b.abs = z.b.abs.make(0)
return z
}
......@@ -72,7 +74,7 @@ func (z *Rat) SetInt64(x int64) *Rat {
func (z *Rat) Set(x *Rat) *Rat {
if z != x {
z.a.Set(&x.a)
z.b = z.b.set(x.b)
z.b.Set(&x.b)
}
return z
}
......@@ -97,15 +99,15 @@ func (z *Rat) Inv(x *Rat) *Rat {
panic("division by zero")
}
z.Set(x)
a := z.b
a := z.b.abs
if len(a) == 0 {
a = a.setWord(1) // materialize numerator
a = a.set(natOne) // materialize numerator
}
b := z.a.abs
if b.cmp(natOne) == 0 {
b = b.make(0) // normalize denominator
}
z.a.abs, z.b = a, b // sign doesn't change
z.a.abs, z.b.abs = a, b // sign doesn't change
return z
}
......@@ -121,24 +123,26 @@ func (x *Rat) Sign() int {
// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
return len(x.b) == 0 || x.b.cmp(natOne) == 0
return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
}
// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
// may change if a new value is assigned to x.
// may change if a new value is assigned to x, and vice versa.
// The sign of the numerator corresponds to the sign of x.
func (x *Rat) Num() *Int {
return &x.a
}
// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator; it
// may change if a new value is assigned to x.
// may change if a new value is assigned to x, and vice versa.
func (x *Rat) Denom() *Int {
if len(x.b) == 0 {
return &Int{abs: nat{1}}
x.b.neg = false // the result is always >= 0
if len(x.b.abs) == 0 {
x.b.abs = x.b.abs.set(natOne) // materialize denominator
}
return &Int{abs: x.b}
return &x.b
}
func gcd(x, y nat) nat {
......@@ -160,16 +164,20 @@ func (z *Rat) norm() *Rat {
case len(z.a.abs) == 0:
// z == 0 - normalize sign and denominator
z.a.neg = false
z.b = z.b.make(0)
case len(z.b) == 0:
z.b.abs = z.b.abs.make(0)
case len(z.b.abs) == 0:
// z is normalized int - nothing to do
case z.b.cmp(natOne) == 0:
case z.b.abs.cmp(natOne) == 0:
// z is int - normalize denominator
z.b = z.b.make(0)
z.b.abs = z.b.abs.make(0)
default:
if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
if f := gcd(z.a.abs, z.b.abs); f.cmp(natOne) != 0 {
z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
z.b, _ = z.b.div(nil, z.b, f)
z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f)
if z.b.abs.cmp(natOne) == 0 {
// z is int - normalize denominator
z.b.abs = z.b.abs.make(0)
}
}
}
return z
......@@ -207,31 +215,31 @@ func scaleDenom(x *Int, f nat) *Int {
// +1 if x > y
//
func (x *Rat) Cmp(y *Rat) int {
return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
}
// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
a1 := scaleDenom(&x.a, y.b)
a2 := scaleDenom(&y.a, x.b)
a1 := scaleDenom(&x.a, y.b.abs)
a2 := scaleDenom(&y.a, x.b.abs)
z.a.Add(a1, a2)
z.b = mulDenom(z.b, x.b, y.b)
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
a1 := scaleDenom(&x.a, y.b)
a2 := scaleDenom(&y.a, x.b)
a1 := scaleDenom(&x.a, y.b.abs)
a2 := scaleDenom(&y.a, x.b.abs)
z.a.Sub(a1, a2)
z.b = mulDenom(z.b, x.b, y.b)
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
z.a.Mul(&x.a, &y.a)
z.b = mulDenom(z.b, x.b, y.b)
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
......@@ -241,10 +249,10 @@ func (z *Rat) Quo(x, y *Rat) *Rat {
if len(y.a.abs) == 0 {
panic("division by zero")
}
a := scaleDenom(&x.a, y.b)
b := scaleDenom(&y.a, x.b)
a := scaleDenom(&x.a, y.b.abs)
b := scaleDenom(&y.a, x.b.abs)
z.a.abs = a.abs
z.b = b.abs
z.b.abs = b.abs
z.a.neg = a.neg != b.neg
return z.norm()
}
......@@ -286,7 +294,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
}
s = s[sep+1:]
var err error
if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
return nil, false
}
return z.norm(), true
......@@ -317,11 +325,11 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
}
powTen := nat(nil).expNN(natTen, exp.abs, nil)
if exp.neg {
z.b = powTen
z.b.abs = powTen
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
z.b = z.b.make(0)
z.b.abs = z.b.abs.make(0)
}
return z, true
......@@ -330,8 +338,8 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
// String returns a string representation of z in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
s := "/1"
if len(x.b) != 0 {
s = "/" + x.b.decimalString()
if len(x.b.abs) != 0 {
s = "/" + x.b.abs.decimalString()
}
return x.a.String() + s
}
......@@ -355,9 +363,9 @@ func (x *Rat) FloatString(prec int) string {
}
return s
}
// x.b != 0
// x.b.abs != 0
q, r := nat(nil).div(nat(nil), x.a.abs, x.b)
q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
p := natOne
if prec > 0 {
......@@ -365,11 +373,11 @@ func (x *Rat) FloatString(prec int) string {
}
r = r.mul(r, p)
r, r2 := r.div(nat(nil), r, x.b)
r, r2 := r.div(nat(nil), r, x.b.abs)
// see if we need to round up
r2 = r2.add(r2, r2)
if x.b.cmp(r2) <= 0 {
if x.b.abs.cmp(r2) <= 0 {
r = r.add(r, natOne)
if r.cmp(p) >= 0 {
q = nat(nil).add(q, natOne)
......@@ -396,8 +404,8 @@ const ratGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (x *Rat) GobEncode() ([]byte, error) {
buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
i := x.b.bytes(buf)
buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
i := x.b.abs.bytes(buf)
j := x.a.abs.bytes(buf[0:i])
n := i - j
if int(uint32(n)) != n {
......@@ -427,6 +435,6 @@ func (z *Rat) GobDecode(buf []byte) error {
i := j + binary.BigEndian.Uint32(buf[j-4:j])
z.a.neg = b&1 != 0
z.a.abs = z.a.abs.setBytes(buf[j:i])
z.b = z.b.setBytes(buf[i:])
z.b.abs = z.b.abs.setBytes(buf[i:])
return nil
}
......@@ -443,3 +443,56 @@ func TestIssue2379(t *testing.T) {
t.Errorf("5) got %s want %s", x, q)
}
}
func TestIssue3521(t *testing.T) {
a := new(Int)
b := new(Int)
a.SetString("64375784358435883458348587", 0)
b.SetString("4789759874531", 0)
// 0) a raw zero value has 1 as denominator
zero := new(Rat)
one := NewInt(1)
if zero.Denom().Cmp(one) != 0 {
t.Errorf("0) got %s want %s", zero.Denom(), one)
}
// 1a) a zero value remains zero independent of denominator
x := new(Rat)
x.Denom().Set(new(Int).Neg(b))
if x.Cmp(zero) != 0 {
t.Errorf("1a) got %s want %s", x, zero)
}
// 1b) a zero value may have a denominator != 0 and != 1
x.Num().Set(a)
qab := new(Rat).SetFrac(a, b)
if x.Cmp(qab) != 0 {
t.Errorf("1b) got %s want %s", x, qab)
}
// 2a) an integral value becomes a fraction depending on denominator
x.SetFrac64(10, 2)
x.Denom().SetInt64(3)
q53 := NewRat(5, 3)
if x.Cmp(q53) != 0 {
t.Errorf("2a) got %s want %s", x, q53)
}
// 2b) an integral value becomes a fraction depending on denominator
x = NewRat(10, 2)
x.Denom().SetInt64(3)
if x.Cmp(q53) != 0 {
t.Errorf("2b) got %s want %s", x, q53)
}
// 3) changing the numerator/denominator of a Rat changes the Rat
x.SetFrac(a, b)
a = x.Num()
b = x.Denom()
a.SetInt64(5)
b.SetInt64(3)
if x.Cmp(q53) != 0 {
t.Errorf("3) got %s want %s", x, q53)
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment