Commit 079c00a4 authored by Russ Cox's avatar Russ Cox

correctly rounded floating-point conversions

in new package strconv.

move atoi etc to strconv too.

update fmt, etc to use strconv.

R=r
DELTA=2232  (1691 added, 424 deleted, 117 changed)
OCL=19286
CL=19380
parent f333f468
......@@ -10,15 +10,17 @@ CC=$(O)c -w
AS=$(O)a
AR=$(O)ar
PKG=$(GOROOT)/pkg/fmt.a
PKG=fmt.a
PKGDIR=$(GOROOT)/pkg
install: $(PKG)
mv $(PKG) $(PKGDIR)/$(PKG)
nuke: clean
rm -f $(PKG)
rm -f $(PKGDIR)/$(PKG)
clean:
rm -f *.$O *.a
rm -f *.$O *.a $(PKG)
%.$O: %.go
$(GC) $*.go
......@@ -39,8 +41,10 @@ O2=\
$(PKG): a1 a2
a1: $(O1)
$(AR) grc $(PKG) $(O1)
rm -f $(O1)
a2: $(O2)
$(AR) grc $(PKG) $(O2)
rm -f $(O2)
$(O1): nuke
$(O2): a1
......
......@@ -4,6 +4,8 @@
package fmt
import "strconv"
/*
Raw formatter. See print.go for a more palatable interface.
......@@ -181,7 +183,7 @@ func (f *Fmt) d64(a int64) *Fmt {
f.clearflags();
return f;
}
func (f *Fmt) d32(a int32) *Fmt {
return f.d64(int64(a));
}
......@@ -332,227 +334,82 @@ func (f *Fmt) s(s string) *Fmt {
return f;
}
func pow10(n int) float64 {
var d float64;
neg := false;
if n < 0 {
if n < -307 { // DBL_MIN_10_EXP
return 0.;
}
neg = true;
n = -n;
}else if n > 308 { // DBL_MAX_10_EXP
return 1.79769e+308; // HUGE_VAL
}
// floating-point
if n < NPows10 {
d = pows10[n];
} else {
d = pows10[NPows10-1];
for {
n -= NPows10 - 1;
if n < NPows10 {
d *= pows10[n];
break;
}
d *= pows10[NPows10 - 1];
}
}
if neg {
return 1/d;
}
return d;
}
func unpack(a float64) (negative bool, exp int, num float64) {
if a == 0 {
return false, 0, 0.0
}
neg := a < 0;
if neg {
a = -a;
}
// find g,e such that a = g*10^e.
// guess 10-exponent using 2-exponent, then fine tune.
g, e2 := sys.frexp(a);
e := int(float64(e2) * .301029995663981);
g = a * pow10(-e);
for g < 1 {
e--;
g = a * pow10(-e);
}
for g >= 10 {
e++;
g = a * pow10(-e);
}
return neg, e, g;
}
// check for Inf, NaN
func(f *Fmt) InfOrNan(a float64) bool {
if sys.isInf(a, 0) {
if sys.isInf(a, 1) {
f.pad("Inf");
} else {
f.pad("-Inf");
}
f.clearflags();
return true;
}
if sys.isNaN(a) {
f.pad("NaN");
f.clearflags();
return true;
func Prec(f *Fmt, def int) int {
if f.prec_present {
return f.prec;
}
return false;
return def;
}
// float64
func (f *Fmt) e64(a float64) *Fmt {
var negative bool;
var g float64;
var exp int;
if f.InfOrNan(a) {
return f;
}
negative, exp, g = unpack(a);
prec := 6;
if f.prec_present {
prec = f.prec;
}
prec++; // one digit left of decimal
var s string;
// multiply by 10^prec to get decimal places; put decimal after first digit
if g == 0 {
// doesn't work for zero - fake it
s = "000000000000000000000000000000000000000000000000000000000000";
if prec < len(s) {
s = s[0:prec];
} else {
prec = len(s);
}
} else {
g *= pow10(prec);
s = f.integer(int64(g + .5), 10, true, &ldigits); // get the digits into a string
}
s = s[0:1] + "." + s[1:prec]; // insert a decimal point
// print exponent with leading 0 if appropriate.
es := New().p(2).integer(int64(exp), 10, true, &ldigits);
if exp >= 0 {
es = "+" + es; // TODO: should do this with a fmt flag
}
s = s + "e" + es;
if negative {
s = "-" + s;
}
func FmtString(f *Fmt, s string) *Fmt {
f.pad(s);
f.clearflags();
return f;
}
// float64
func (f *Fmt) e64(a float64) *Fmt {
return FmtString(f, strconv.ftoa64(a, 'e', Prec(f, 6)));
}
func (f *Fmt) f64(a float64) *Fmt {
var negative bool;
var g float64;
var exp int;
if f.InfOrNan(a) {
return f;
}
negative, exp, g = unpack(a);
if exp > 19 || exp < -19 { // too big for this sloppy code
return f.e64(a);
}
prec := 6;
if f.prec_present {
prec = f.prec;
}
// prec is number of digits after decimal point
s := "NO";
if exp >= 0 {
g *= pow10(exp);
gi := int64(g);
s = New().integer(gi, 10, true, &ldigits);
s = s + ".";
g -= float64(gi);
s = s + New().p(prec).integer(int64(g*pow10(prec) + .5), 10, true, &ldigits);
} else {
g *= pow10(prec + exp);
s = "0." + New().p(prec).integer(int64(g + .5), 10, true, &ldigits);
}
if negative {
s = "-" + s;
}
f.pad(s);
f.clearflags();
return f;
return FmtString(f, strconv.ftoa64(a, 'f', Prec(f, 6)));
}
// float64
func (f *Fmt) g64(a float64) *Fmt {
if f.InfOrNan(a) {
return f;
}
f1 := New();
f2 := New();
if f.wid_present {
f1.w(f.wid);
f2.w(f.wid);
}
if f.prec_present {
f1.p(f.prec);
f2.p(f.prec);
}
efmt := f1.e64(a).str();
ffmt := f2.f64(a).str();
// ffmt can return e in my bogus world; don't trim trailing 0s if so.
f_is_e := false;
for i := 0; i < len(ffmt); i++ {
if ffmt[i] == 'e' {
f_is_e = true;
break;
}
}
if !f_is_e {
// strip trailing zeros
l := len(ffmt);
for ffmt[l-1]=='0' {
l--;
}
ffmt = ffmt[0:l];
}
if len(efmt) < len(ffmt) {
f.pad(efmt);
} else {
f.pad(ffmt);
}
f.clearflags();
return f;
return FmtString(f, strconv.ftoa64(a, 'g', Prec(f, -1)));
}
// float
func (x *Fmt) f32(a float32) *Fmt {
return x.f64(float64(a))
func (f *Fmt) fb64(a float64) *Fmt {
return FmtString(f, strconv.ftoa64(a, 'b', 0));
}
func (x *Fmt) f(a float) *Fmt {
return x.f64(float64(a))
// float32
// cannot defer to float64 versions
// because it will get rounding wrong in corner cases.
func (f *Fmt) e32(a float32) *Fmt {
return FmtString(f, strconv.ftoa32(a, 'e', Prec(f, -1)));
}
func (f *Fmt) f32(a float32) *Fmt {
return FmtString(f, strconv.ftoa32(a, 'f', Prec(f, 6)));
}
func (f *Fmt) g32(a float32) *Fmt {
return FmtString(f, strconv.ftoa32(a, 'g', Prec(f, -1)));
}
func (f *Fmt) fb32(a float32) *Fmt {
return FmtString(f, strconv.ftoa32(a, 'b', 0));
}
// float
func (x *Fmt) e32(a float32) *Fmt {
return x.e64(float64(a))
func (x *Fmt) f(a float) *Fmt {
if strconv.floatsize == 32 {
return x.f32(float32(a))
}
return x.f64(float64(a))
}
func (x *Fmt) e(a float) *Fmt {
if strconv.floatsize == 32 {
return x.e32(float32(a))
}
return x.e64(float64(a))
}
// float
func (x *Fmt) g32(a float32) *Fmt {
func (x *Fmt) g(a float) *Fmt {
if strconv.floatsize == 32 {
return x.g32(float32(a))
}
return x.g64(float64(a))
}
func (x *Fmt) g(a float) *Fmt {
return x.g64(float64(a))
func (x *Fmt) fb(a float) *Fmt {
if strconv.floatsize == 32 {
return x.fb32(float32(a))
}
return x.fb64(float64(a))
}
......@@ -230,12 +230,24 @@ func getString(v reflect.Value) (val string, ok bool) {
return "", false;
}
func getFloat(v reflect.Value) (val float64, ok bool) {
func getFloat32(v reflect.Value) (val float32, ok bool) {
switch v.Kind() {
case reflect.FloatKind:
return float64(v.(reflect.FloatValue).Get()), true;
case reflect.Float32Kind:
return float64(v.(reflect.Float32Value).Get()), true;
return float32(v.(reflect.Float32Value).Get()), true;
case reflect.FloatKind:
if v.Type().Size()*8 == 32 {
return float32(v.(reflect.FloatValue).Get()), true;
}
}
return 0.0, false;
}
func getFloat64(v reflect.Value) (val float64, ok bool) {
switch v.Kind() {
case reflect.FloatKind:
if v.Type().Size()*8 == 64 {
return float64(v.(reflect.FloatValue).Get()), true;
}
case reflect.Float64Kind:
return float64(v.(reflect.Float64Value).Get()), true;
case reflect.Float80Kind:
......@@ -299,9 +311,20 @@ func (p *P) printField(field reflect.Value) (was_string bool) {
case reflect.UintKind, reflect.Uint8Kind, reflect.Uint16Kind, reflect.Uint32Kind, reflect.Uint64Kind:
v, signed, ok := getInt(field);
s = p.fmt.ud64(uint64(v)).str();
case reflect.FloatKind, reflect.Float32Kind, reflect.Float64Kind, reflect.Float80Kind:
v, ok := getFloat(field);
case reflect.Float32Kind:
v, ok := getFloat32(field);
s = p.fmt.g32(v).str();
case reflect.Float64Kind, reflect.Float80Kind:
v, ok := getFloat64(field);
s = p.fmt.g64(v).str();
case reflect.FloatKind:
if field.Type().Size()*8 == 32 {
v, ok := getFloat32(field);
s = p.fmt.g32(v).str();
} else {
v, ok := getFloat64(field);
s = p.fmt.g64(v).str();
}
case reflect.StringKind:
v, ok := getString(field);
s = p.fmt.s(v).str();
......@@ -400,6 +423,10 @@ func (p *P) doprintf(format string, v reflect.StructValue) {
case 'b':
if v, signed, ok := getInt(field); ok {
s = p.fmt.b64(uint64(v)).str() // always unsigned
} else if v, ok := getFloat32(field); ok {
s = p.fmt.fb32(v).str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.fb64(v).str()
} else {
goto badtype
}
......@@ -442,19 +469,25 @@ func (p *P) doprintf(format string, v reflect.StructValue) {
// float
case 'e':
if v, ok := getFloat(field); ok {
if v, ok := getFloat32(field); ok {
s = p.fmt.e32(v).str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.e64(v).str()
} else {
goto badtype
}
case 'f':
if v, ok := getFloat(field); ok {
if v, ok := getFloat32(field); ok {
s = p.fmt.f32(v).str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.f64(v).str()
} else {
goto badtype
}
case 'g':
if v, ok := getFloat(field); ok {
if v, ok := getFloat32(field); ok {
s = p.fmt.g32(v).str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.g64(v).str()
} else {
goto badtype
......
......@@ -13,7 +13,7 @@ import (
"os";
"net";
"http";
"strings"
"strconv";
)
// Serve a new connection.
......@@ -39,7 +39,7 @@ func ServeConnection(fd net.Conn, raddr string, f *(*Conn, *Request)) {
export func Serve(l net.Listener, f *(*Conn, *Request)) *os.Error {
// TODO: Make this unnecessary
s, e := os.Getenv("GOMAXPROCS");
if n, ok := strings.atoi(s); n < 3 {
if n, ok := strconv.atoi(s); n < 3 {
print("Warning: $GOMAXPROCS needs to be at least 3.\n");
}
......
......@@ -31,10 +31,11 @@ rm -f *.6
buildfiles strings.go
builddirs syscall \
math \
os \
reflect \
builddirs syscall\
math\
os\
strconv\
reflect\
buildfiles io.go
......
......@@ -7,8 +7,8 @@ package net
import (
"os";
"net";
"strings";
"syscall"
"strconv";
"syscall";
)
export var (
......@@ -113,7 +113,7 @@ func SockaddrToHostPort(sa *syscall.Sockaddr) (hostport string, err *os.Error) {
return "", e
}
host := IPToString(addr);
return JoinHostPort(host, strings.itoa(port)), nil;
return JoinHostPort(host, strconv.itoa(port)), nil;
default:
return "", UnknownSocketFamily
}
......
......@@ -72,9 +72,9 @@ func valuedump(s, t string) {
case reflect.FloatKind:
v.(reflect.FloatValue).Set(3200.0);
case reflect.Float32Kind:
v.(reflect.Float32Value).Set(32.0);
v.(reflect.Float32Value).Set(32.1);
case reflect.Float64Kind:
v.(reflect.Float64Value).Set(64.0);
v.(reflect.Float64Value).Set(64.2);
case reflect.StringKind:
v.(reflect.StringValue).Set("stringy cheese");
case reflect.BoolKind:
......@@ -136,8 +136,8 @@ func main() {
valuedump("uint16", "16");
valuedump("uint32", "32");
valuedump("uint64", "64");
valuedump("float32", "+3.200000e+01");
valuedump("float64", "+6.400000e+01");
valuedump("float32", "32.1");
valuedump("float64", "64.2");
valuedump("string", "stringy cheese");
valuedump("bool", "true");
valuedump("*int8", "*int8(0)");
......@@ -146,7 +146,7 @@ func main() {
valuedump("**P.integer", "**P.integer(0)");
valuedump("*map[string]int32", "*map[string]int32(0)");
valuedump("*chan<-string", "*chan<-string(0)");
valuedump("struct {c *chan *int32; d float32}", "struct{c *chan*int32; d float32}{*chan*int32(0), +0.000000e+00}");
valuedump("struct {c *chan *int32; d float32}", "struct{c *chan*int32; d float32}{*chan*int32(0), 0}");
valuedump("*(a int8, b int32)", "*(a int8, b int32)(0)");
valuedump("struct {c *(? *chan *P.integer, ? *int8)}", "struct{c *(? *chan*P.integer, ? *int8)}{*(? *chan*P.integer, ? *int8)(0)}");
valuedump("struct {a int8; b int32}", "struct{a int8; b int32}{0, 0}");
......@@ -158,7 +158,7 @@ func main() {
}
{ var tmp = 123.4;
value := reflect.NewValue(tmp);
assert(reflect.ValueToString(value), "+1.234000e+02");
assert(reflect.ValueToString(value), "123.4");
}
{ var tmp = "abc";
value := reflect.NewValue(tmp);
......@@ -166,9 +166,9 @@ func main() {
}
{
var i int = 7;
var tmp = &T{123, 456.0, "hello", &i};
var tmp = &T{123, 456.75, "hello", &i};
value := reflect.NewValue(tmp);
assert(reflect.ValueToString(value.(reflect.PtrValue).Sub()), "main.T{123, +4.560000e+02, hello, *int(@)}");
assert(reflect.ValueToString(value.(reflect.PtrValue).Sub()), "main.T{123, 456.75, hello, *int(@)}");
}
{
type C chan *T; // TODO: should not be necessary
......
......@@ -9,7 +9,7 @@ package reflect
import (
"reflect";
"strings";
"strconv";
)
export func TypeToString(typ Type, expand bool) string
......@@ -81,7 +81,7 @@ func TypeToString(typ Type, expand bool) string {
if a.Open() {
str = "[]"
} else {
str = "[" + strings.ltoa(int64(a.Len())) + "]"
str = "[" + strconv.itoa64(int64(a.Len())) + "]"
}
return str + TypeToString(a.Elem(), false);
case MapKind:
......@@ -120,11 +120,7 @@ func TypeToString(typ Type, expand bool) string {
// TODO: want an unsigned one too
func integer(v int64) string {
return strings.ltoa(v);
}
func floatingpoint(v float64) string {
return strings.f64toa(v);
return strconv.itoa64(v);
}
func ValueToString(val Value) string {
......@@ -154,11 +150,15 @@ func ValueToString(val Value) string {
case Uint64Kind:
return integer(int64(val.(Uint64Value).Get()));
case FloatKind:
return floatingpoint(float64(val.(FloatValue).Get()));
if strconv.floatsize == 32 {
return strconv.ftoa32(float32(val.(FloatValue).Get()), 'g', -1);
} else {
return strconv.ftoa64(float64(val.(FloatValue).Get()), 'g', -1);
}
case Float32Kind:
return floatingpoint(float64(val.(Float32Value).Get()));
return strconv.ftoa32(val.(Float32Value).Get(), 'g', -1);
case Float64Kind:
return floatingpoint(float64(val.(Float64Value).Get()));
return strconv.ftoa64(val.(Float64Value).Get(), 'g', -1);
case Float80Kind:
return "float80";
case StringKind:
......
# Copyright 2009 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
# DO NOT EDIT. Automatically generated by gobuild.
# gobuild -m strconv atof.go atoi.go decimal.go ftoa.go itoa.go
O=6
GC=$(O)g
CC=$(O)c -w
AS=$(O)a
AR=$(O)ar
PKG=$(GOROOT)/pkg/strconv.a
install: $(PKG)
nuke: clean
rm -f $(PKG)
clean:
rm -f *.$O *.a
%.$O: %.go
$(GC) $*.go
%.$O: %.c
$(CC) $*.c
%.$O: %.s
$(AS) $*.s
O1=\
atoi.$O\
decimal.$O\
itoa.$O\
O2=\
ftoa.$O\
O3=\
atof.$O\
$(PKG): a1 a2 a3
a1: $(O1)
$(AR) grc $(PKG) $(O1)
rm -f $(O1)
a2: $(O2)
$(AR) grc $(PKG) $(O2)
rm -f $(O2)
a3: $(O3)
$(AR) grc $(PKG) $(O3)
rm -f $(O3)
$(O1): nuke
$(O2): a1
$(O3): a2
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Decimal to binary floating point conversion.
// Algorithm:
// 1) Store input in multiprecision decimal.
// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
// 3) Multiply by 2^precision and round to get mantissa.
package strconv
import "strconv"
// TODO(rsc): Better truncation handling, check for overflow in exponent.
func StringToDecimal(s string) (neg bool, d *Decimal, trunc bool, ok bool) {
i := 0;
// optional sign
if i >= len(s) {
return;
}
switch {
case s[i] == '+':
i++;
case s[i] == '-':
neg = true;
i++;
}
// digits
b := new(Decimal);
sawdot := false;
sawdigits := false;
for ; i < len(s); i++ {
switch {
case s[i] == '.':
if sawdot {
return;
}
sawdot = true;
b.dp = b.nd;
continue;
case '0' <= s[i] && s[i] <= '9':
sawdigits = true;
if s[i] == '0' && b.nd == 0 { // ignore leading zeros
b.dp--;
continue;
}
b.d[b.nd] = s[i];
b.nd++;
continue;
}
break;
}
if !sawdigits {
return;
}
if !sawdot {
b.dp = b.nd;
}
// optional exponent moves decimal point
if i < len(s) && s[i] == 'e' {
i++;
if i >= len(s) {
return;
}
esign := 1;
if s[i] == '+' {
i++;
} else if s[i] == '-' {
i++;
esign = -1;
}
if i >= len(s) || s[i] < '0' || s[i] > '9' {
return;
}
e := 0;
for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
e = e*10 + int(s[i]) - '0';
}
b.dp += e*esign;
}
if i != len(s) {
return;
}
d = b;
ok = true;
return;
}
// Decimal power of ten to binary power of two.
var powtab = []int{
1, 3, 6, 9, 13, 16, 19, 23, 26
}
func DecimalToFloatBits(neg bool, d *Decimal, trunc bool, flt *FloatInfo) (b uint64, overflow bool) {
// Zero is always a special case.
if d.nd == 0 {
return 0, false
}
// TODO: check for obvious overflow
// Scale by powers of two until in range [0.5, 1.0)
exp := 0;
for d.dp > 0 {
var n int;
if d.dp >= len(powtab) {
n = 27;
} else {
n = powtab[d.dp];
}
d.Shift(-n);
exp += n;
}
for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
var n int;
if -d.dp >= len(powtab) {
n = 27;
} else {
n = powtab[-d.dp];
}
d.Shift(n);
exp -= n;
}
// Our range is [0.5,1) but floating point range is [1,2).
exp--;
// Minimum representable exponent is flt.bias+1.
// If the exponent is smaller, move it up and
// adjust d accordingly.
if exp < flt.bias+1 {
n := flt.bias+1 - exp;
d.Shift(-n);
exp += n;
}
// TODO: overflow/underflow
// Extract 1+flt.mantbits bits.
mant := d.Shift(int(1+flt.mantbits)).RoundedInteger();
// Denormalized?
if mant&(1<<flt.mantbits) == 0 {
if exp != flt.bias+1 {
// TODO: remove - has no business panicking
panicln("DecimalToFloatBits", exp, flt.bias+1);
}
exp--;
} else {
if exp <= flt.bias {
// TODO: remove - has no business panicking
panicln("DecimalToFloatBits1", exp, flt.bias);
}
}
// Assemble bits.
bits := mant & (uint64(1)<<flt.mantbits - 1);
bits |= uint64((exp-flt.bias)&(1<<flt.expbits - 1)) << flt.mantbits;
if neg {
bits |= 1<<flt.mantbits<<flt.expbits;
}
return bits, false;
}
// If possible to convert decimal d to 64-bit float f exactly,
// entirely in floating-point math, do so, avoiding the machinery above.
func DecimalToFloat64(neg bool, d *Decimal, trunc bool) (f float64, ok bool) {
// TODO: Fill in.
return 0, false;
}
// If possible to convert decimal d to 32-bit float f exactly,
// entirely in floating-point math, do so, avoiding the machinery above.
func DecimalToFloat32(neg bool, d *Decimal, trunc bool) (f float32, ok bool) {
// TODO: Fill in.
return 0, false;
}
export func atof64(s string) (f float64, overflow bool, ok bool) {
neg, d, trunc, ok1 := StringToDecimal(s);
if !ok1 {
return 0, false, false;
}
if f, ok := DecimalToFloat64(neg, d, trunc); ok {
return f, false, true;
}
b, overflow1 := DecimalToFloatBits(neg, d, trunc, &float64info);
return sys.float64frombits(b), overflow1, true;
}
export func atof32(s string) (f float32, overflow bool, ok bool) {
neg, d, trunc, ok1 := StringToDecimal(s);
if !ok1 {
return 0, false, false;
}
if f, ok := DecimalToFloat32(neg, d, trunc); ok {
return f, false, true;
}
b, overflow1 := DecimalToFloatBits(neg, d, trunc, &float32info);
return sys.float32frombits(uint32(b)), overflow1, true;
}
export func atof(s string) (f float, overflow bool, ok bool) {
if floatsize == 32 {
var f1 float32;
f1, overflow, ok = atof32(s);
return float(f1), overflow, ok;
}
var f1 float64;
f1, overflow, ok = atof64(s);
return float(f1), overflow, ok;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
// Convert decimal string to unsigned integer.
// TODO: Doesn't check for overflow.
export func atoui64(s string) (i uint64, ok bool) {
// empty string bad
if len(s) == 0 {
return 0, false
}
// pick off zero
if s == "0" {
return 0, true
}
// otherwise, leading zero bad
if s[0] == '0' {
return 0, false
}
// parse number
n := uint64(0);
for i := 0; i < len(s); i++ {
if s[i] < '0' || s[i] > '9' {
return 0, false
}
n = n*10 + uint64(s[i] - '0')
}
return n, true
}
// Convert decimal string to integer.
// TODO: Doesn't check for overflow.
export func atoi64(s string) (i int64, ok bool) {
// empty string bad
if len(s) == 0 {
return 0, false
}
// pick off leading sign
neg := false;
if s[0] == '+' {
s = s[1:len(s)]
} else if s[0] == '-' {
neg = true;
s = s[1:len(s)]
}
var un uint64;
un, ok = atoui64(s);
if !ok {
return 0, false
}
n := int64(un);
if neg {
n = -n
}
return n, true
}
export func atoui(s string) (i uint, ok bool) {
ii, okok := atoui64(s);
i = uint(ii);
return i, okok
}
export func atoi(s string) (i int, ok bool) {
ii, okok := atoi64(s);
i = int(ii);
return i, okok
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Multiprecision decimal numbers.
// For floating-point formatting only; not general purpose.
// Only operations are assign and (binary) left/right shift.
// Can do binary floating point in multiprecision decimal precisely
// because 2 divides 10; cannot do decimal floating point
// in multiprecision binary precisely.
package strconv
package type Decimal struct {
// TODO(rsc): Can make d[] a bit smaller and add
// truncated bool;
d [2000] byte; // digits
nd int; // number of digits used
dp int; // decimal point
};
func (a *Decimal) String() string;
func (a *Decimal) Assign(v uint64);
func (a *Decimal) Shift(k int) *Decimal;
func (a *Decimal) Round(nd int) *Decimal;
func (a *Decimal) RoundUp(nd int) *Decimal;
func (a *Decimal) RoundDown(nd int) *Decimal;
func (a *Decimal) RoundedInteger() uint64;
func Copy(dst *[]byte, src *[]byte) int;
func DigitZero(dst *[]byte) int;
func (a *Decimal) String() string {
n := 10 + a.nd;
if a.dp > 0 {
n += a.dp;
}
if a.dp < 0 {
n += -a.dp;
}
buf := new([]byte, n);
w := 0;
switch {
case a.dp <= 0:
// zeros fill space between decimal point and digits
buf[w] = '0';
w++;
buf[w] = '.';
w++;
w += DigitZero(buf[w:w+-a.dp]);
w += Copy(buf[w:w+a.nd], (&a.d)[0:a.nd]);
case a.dp < a.nd:
// decimal point in middle of digits
w += Copy(buf[w:w+a.dp], (&a.d)[0:a.dp]);
buf[w] = '.';
w++;
w += Copy(buf[w:w+a.nd-a.dp], (&a.d)[a.dp:a.nd]);
default:
// zeros fill space between digits and decimal point
w += Copy(buf[w:w+a.nd], (&a.d)[0:a.nd]);
w += DigitZero(buf[w:w+a.dp-a.nd]);
}
return string(buf[0:w]);
}
func Copy(dst *[]byte, src *[]byte) int {
for i := 0; i < len(dst); i++ {
dst[i] = src[i];
}
return len(dst);
}
func DigitZero(dst *[]byte) int {
for i := 0; i < len(dst); i++ {
dst[i] = '0';
}
return len(dst);
}
// Trim trailing zeros from number.
// (They are meaningless; the decimal point is tracked
// independent of the number of digits.)
func Trim(a *Decimal) {
for a.nd > 0 && a.d[a.nd-1] == '0' {
a.nd--;
}
if a.nd == 0 {
a.dp = 0;
}
}
// Assign v to a.
func (a *Decimal) Assign(v uint64) {
var buf [50]byte;
// Write reversed decimal in buf.
n := 0;
for v > 0 {
v1 := v/10;
v -= 10*v1;
buf[n] = byte(v + '0');
n++;
v = v1;
}
// Reverse again to produce forward decimal in a.d.
a.nd = 0;
for n--; n>=0; n-- {
a.d[a.nd] = buf[n];
a.nd++;
}
a.dp = a.nd;
Trim(a);
}
package func NewDecimal(i uint64) *Decimal {
a := new(Decimal);
a.Assign(i);
return a;
}
// Maximum shift that we can do in one pass without overflow.
// Signed int has 31 bits, and we have to be able to accomodate 9<<k.
const MaxShift = 27
// Binary shift right (* 2) by k bits. k <= MaxShift to avoid overflow.
func RightShift(a *Decimal, k uint) {
r := 0; // read pointer
w := 0; // write pointer
// Pick up enough leading digits to cover first shift.
n := 0;
for ; n>>k == 0; r++ {
if r >= a.nd {
if n == 0 {
a.nd = 0;
return;
}
for n >> k == 0 {
n = n*10;
r++;
}
break;
}
c := int(a.d[r]);
n = n*10 + c-'0';
}
a.dp -= r-1;
// Pick up a digit, put down a digit.
for ; r < a.nd; r++ {
c := int(a.d[r]);
dig := n>>k;
n -= dig<<k;
a.d[w] = byte(dig+'0');
w++;
n = n*10 + c-'0';
}
// Put down extra digits.
for n > 0 {
dig := n>>k;
n -= dig<<k;
a.d[w] = byte(dig+'0');
w++;
n = n*10;
}
a.nd = w;
Trim(a);
}
// Cheat sheet for left shift: table indexed by shift count giving
// number of new digits that will be introduced by that shift.
//
// For example, leftcheat[4] = {2, "625"}. That means that
// if we are shifting by 4 (multiplying by 16), it will add 2 digits
// when the string prefix is "625" through "999", and one fewer digit
// if the string prefix is "000" through "624".
//
// Credit for this trick goes to Ken.
type LeftCheat struct {
delta int; // number of new digits
cutoff string; // minus one digit if original < a.
}
var leftcheat = []LeftCheat {
// Leading digits of 1/2^i = 5^i.
// 5^23 is not an exact 64-bit floating point number,
// so have to use bc for the math.
/*
seq 27 | sed 's/^/5^/' | bc |
awk 'BEGIN{ print "\tLeftCheat{ 0, \"\" }," }
{
log2 = log(2)/log(10)
printf("\tLeftCheat{ %d, \"%s\" },\t// * %d\n",
int(log2*NR+1), $0, 2**NR)
}'
*/
LeftCheat{ 0, "" },
LeftCheat{ 1, "5" }, // * 2
LeftCheat{ 1, "25" }, // * 4
LeftCheat{ 1, "125" }, // * 8
LeftCheat{ 2, "625" }, // * 16
LeftCheat{ 2, "3125" }, // * 32
LeftCheat{ 2, "15625" }, // * 64
LeftCheat{ 3, "78125" }, // * 128
LeftCheat{ 3, "390625" }, // * 256
LeftCheat{ 3, "1953125" }, // * 512
LeftCheat{ 4, "9765625" }, // * 1024
LeftCheat{ 4, "48828125" }, // * 2048
LeftCheat{ 4, "244140625" }, // * 4096
LeftCheat{ 4, "1220703125" }, // * 8192
LeftCheat{ 5, "6103515625" }, // * 16384
LeftCheat{ 5, "30517578125" }, // * 32768
LeftCheat{ 5, "152587890625" }, // * 65536
LeftCheat{ 6, "762939453125" }, // * 131072
LeftCheat{ 6, "3814697265625" }, // * 262144
LeftCheat{ 6, "19073486328125" }, // * 524288
LeftCheat{ 7, "95367431640625" }, // * 1048576
LeftCheat{ 7, "476837158203125" }, // * 2097152
LeftCheat{ 7, "2384185791015625" }, // * 4194304
LeftCheat{ 7, "11920928955078125" }, // * 8388608
LeftCheat{ 8, "59604644775390625" }, // * 16777216
LeftCheat{ 8, "298023223876953125" }, // * 33554432
LeftCheat{ 8, "1490116119384765625" }, // * 67108864
LeftCheat{ 9, "7450580596923828125" }, // * 134217728
}
// Is the leading prefix of b lexicographically less than s?
func PrefixIsLessThan(b *[]byte, s string) bool {
for i := 0; i < len(s); i++ {
if i >= len(b) {
return true;
}
if b[i] != s[i] {
return b[i] < s[i];
}
}
return false;
}
// Binary shift left (/ 2) by k bits. k <= MaxShift to avoid overflow.
func LeftShift(a *Decimal, k uint) {
delta := leftcheat[k].delta;
if PrefixIsLessThan((&a.d)[0:a.nd], leftcheat[k].cutoff) {
delta--;
}
r := a.nd; // read index
w := a.nd + delta; // write index
n := 0;
// Pick up a digit, put down a digit.
for r--; r >= 0; r-- {
n += (int(a.d[r])-'0') << k;
quo := n/10;
rem := n - 10*quo;
w--;
a.d[w] = byte(rem+'0');
n = quo;
}
// Put down extra digits.
for n > 0 {
quo := n/10;
rem := n - 10*quo;
w--;
a.d[w] = byte(rem+'0');
n = quo;
}
if w != 0 {
// TODO: Remove - has no business panicking.
panic("fmt: bad LeftShift");
}
a.nd += delta;
a.dp += delta;
Trim(a);
}
// Binary shift left (k > 0) or right (k < 0).
// Returns receiver for convenience.
func (a *Decimal) Shift(k int) *Decimal {
switch {
case k > 0:
for k > MaxShift {
LeftShift(a, MaxShift);
k -= MaxShift;
}
LeftShift(a, uint(k));
case k < 0:
for k < -MaxShift {
RightShift(a, MaxShift);
k += MaxShift;
}
RightShift(a, uint(-k));
}
return a;
}
// If we chop a at nd digits, should we round up?
func ShouldRoundUp(a *Decimal, nd int) bool {
if nd <= 0 || nd >= a.nd {
return false;
}
if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even
return (a.d[nd-1] - '0') % 2 != 0;
}
// not halfway - digit tells all
return a.d[nd] >= '5';
}
// Round a to nd digits (or fewer).
// Returns receiver for convenience.
func (a *Decimal) Round(nd int) *Decimal {
if nd <= 0 || nd >= a.nd {
return a;
}
if(ShouldRoundUp(a, nd)) {
return a.RoundUp(nd);
}
return a.RoundDown(nd);
}
// Round a down to nd digits (or fewer).
// Returns receiver for convenience.
func (a *Decimal) RoundDown(nd int) *Decimal {
if nd <= 0 || nd >= a.nd {
return a;
}
a.nd = nd;
Trim(a);
return a;
}
// Round a up to nd digits (or fewer).
// Returns receiver for convenience.
func (a *Decimal) RoundUp(nd int) *Decimal {
if nd <= 0 || nd >= a.nd {
return a;
}
// round up
for i := nd-1; i >= 0; i-- {
c := a.d[i];
if c < '9' { // can stop after this digit
a.d[i]++;
a.nd = i+1;
return a;
}
}
// Number is all 9s.
// Change to single 1 with adjusted decimal point.
a.d[0] = '1';
a.nd = 1;
a.dp++;
return a;
}
// Extract integer part, rounded appropriately.
// No guarantees about overflow.
func (a *Decimal) RoundedInteger() uint64 {
if a.dp > 20 {
return 0xFFFFFFFFFFFFFFFF;
}
var i int;
n := uint64(0);
for i = 0; i < a.dp && i < a.nd; i++ {
n = n*10 + uint64(a.d[i] - '0');
}
for ; i < a.dp; i++ {
n *= 10;
}
if ShouldRoundUp(a, a.dp) {
n++;
}
return n;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Binary to decimal floating point conversion.
// Algorithm:
// 1) store mantissa in multiprecision decimal
// 2) shift decimal by exponent
// 3) read digits out & format
package strconv
import "strconv"
// TODO: move elsewhere?
package type FloatInfo struct {
mantbits uint;
expbits uint;
bias int;
}
package var float32info = FloatInfo{ 23, 8, -127 }
package var float64info = FloatInfo{ 52, 11, -1023 }
func FmtB(neg bool, mant uint64, exp int, flt *FloatInfo) string
func FmtE(neg bool, d *Decimal, prec int) string
func FmtF(neg bool, d *Decimal, prec int) string
func GenericFtoa(bits uint64, fmt byte, prec int, flt *FloatInfo) string
func Max(a, b int) int
func RoundShortest(d *Decimal, mant uint64, exp int, flt *FloatInfo)
func FloatSize() int {
// Figure out whether float is float32 or float64.
// 1e-35 is representable in both, but 1e-70
// is too small for a float32.
var f float = 1e-35;
if f*f == 0 {
return 32;
}
return 64;
}
export var floatsize = FloatSize()
export func ftoa32(f float32, fmt byte, prec int) string {
return GenericFtoa(uint64(sys.float32bits(f)), fmt, prec, &float32info);
}
export func ftoa64(f float64, fmt byte, prec int) string {
return GenericFtoa(sys.float64bits(f), fmt, prec, &float64info);
}
export func ftoa(f float, fmt byte, prec int) string {
if floatsize == 32 {
return ftoa32(float32(f), fmt, prec);
}
return ftoa64(float64(f), fmt, prec);
}
func GenericFtoa(bits uint64, fmt byte, prec int, flt *FloatInfo) string {
neg := bits>>flt.expbits>>flt.mantbits != 0;
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
mant := bits & (uint64(1)<<flt.mantbits - 1);
switch exp {
case 1<<flt.expbits - 1:
// Inf, NaN
if mant != 0 {
return "NaN";
}
if neg {
return "-Inf";
}
return "+Inf";
case 0:
// denormalized
exp++;
default:
// add implicit top bit
mant |= uint64(1)<<flt.mantbits;
}
exp += flt.bias;
// Pick off easy binary format.
if fmt == 'b' {
return FmtB(neg, mant, exp, flt);
}
// Create exact decimal representation.
// The shift is exp - flt.mantbits because mant is a 1-bit integer
// followed by a flt.mantbits fraction, and we are treating it as
// a 1+flt.mantbits-bit integer.
d := NewDecimal(mant).Shift(exp - int(flt.mantbits));
// Round appropriately.
// Negative precision means "only as much as needed to be exact."
if prec < 0 {
RoundShortest(d, mant, exp, flt);
switch fmt {
case 'e':
prec = d.nd - 1;
case 'f':
prec = Max(d.nd - d.dp, 0);
case 'g':
prec = d.nd;
}
} else {
switch fmt {
case 'e':
d.Round(prec+1);
case 'f':
d.Round(d.dp+prec);
case 'g':
if prec == 0 {
prec = 1;
}
d.Round(prec);
}
}
switch fmt {
case 'e':
return FmtE(neg, d, prec);
case 'f':
return FmtF(neg, d, prec);
case 'g':
// trailing zeros are removed.
if prec > d.nd {
prec = d.nd;
}
// %e is used if the exponent from the conversion
// is less than -4 or greater than or equal to the precision.
exp := d.dp - 1;
if exp < -4 || exp >= prec {
return FmtE(neg, d, prec - 1);
}
return FmtF(neg, d, Max(prec - d.dp, 0));
}
return "%" + string(fmt);
}
// Round d (= mant * 2^exp) to the shortest number of digits
// that will let the original floating point value be precisely
// reconstructed. Size is original floating point size (64 or 32).
func RoundShortest(d *Decimal, mant uint64, exp int, flt *FloatInfo) {
// TODO: Unless exp == minexp, if the number of digits in d
// is less than 17, it seems unlikely that it could not be
// the shortest possible number already. So maybe we can
// bail out without doing the extra multiprecision math here.
// Compute upper and lower such that any decimal number
// between upper and lower (possibly inclusive)
// will round to the original floating point number.
// d = mant << (exp - mantbits)
// Next highest floating point number is mant+1 << exp-mantbits.
// Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
upper := NewDecimal(mant*2+1).Shift(exp-int(flt.mantbits)-1);
// d = mant << (exp - mantbits)
// Next lowest floating point number is mant-1 << exp-mantbits,
// unless mant-1 drops the significant bit and exp is not the minimum exp,
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
// Either way, call it mantlo << explo-mantbits.
// Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
minexp := flt.bias + 1; // minimum possible exponent
var mantlo uint64;
var explo int;
if mant > 1<<flt.mantbits || exp == minexp {
mantlo = mant - 1;
explo = exp;
} else {
mantlo = mant*2-1;
explo = exp-1;
}
lower := NewDecimal(mantlo*2+1).Shift(explo-int(flt.mantbits)-1);
// The upper and lower bounds are possible outputs only if
// the original mantissa is even, so that IEEE round-to-even
// would round to the original mantissa and not the neighbors.
inclusive := mant%2 == 0;
// Now we can figure out the minimum number of digits required.
// Walk along until d has distinguished itself from upper and lower.
for i := 0; i < d.nd; i++ {
var l, m, u byte; // lower, middle, upper digits
if i < lower.nd {
l = lower.d[i];
} else {
l = '0';
}
m = d.d[i];
if i < upper.nd {
u = upper.d[i];
} else {
u = '0';
}
// Okay to round down (truncate) if lower has a different digit
// or if lower is inclusive and is exactly the result of rounding down.
okdown := l != m || (inclusive && l == m && i+1 == lower.nd);
// Okay to round up if upper has a different digit and
// either upper is inclusive or upper is bigger than the result of rounding up.
okup := m != u && (inclusive || i+1 < upper.nd);
// If it's okay to do either, then round to the nearest one.
// If it's okay to do only one, do it.
switch {
case okdown && okup:
d.Round(i+1);
return;
case okdown:
d.RoundDown(i+1);
return;
case okup:
d.RoundUp(i+1);
return;
}
}
}
// %e: -d.ddddde±dd
func FmtE(neg bool, d *Decimal, prec int) string {
buf := new([]byte, 3+Max(prec, 0)+30); // "-0." + prec digits + exp
w := 0; // write index
// sign
if neg {
buf[w] = '-';
w++;
}
// first digit
if d.nd == 0 {
buf[w] = '0';
} else {
buf[w] = d.d[0];
}
w++;
// .moredigits
if prec > 0 {
buf[w] = '.';
w++;
for i := 0; i < prec; i++ {
if 1+i < d.nd {
buf[w] = d.d[1+i];
} else {
buf[w] = '0';
}
w++;
}
}
// e±
buf[w] = 'e';
w++;
exp := d.dp - 1;
if d.nd == 0 { // special case: 0 has exponent 0
exp = 0;
}
if exp < 0 {
buf[w] = '-';
exp = -exp;
} else {
buf[w] = '+';
}
w++;
// dddd
// count digits
n := 0;
for e := exp; e > 0; e /= 10 {
n++;
}
// leading zeros
for i := n; i < 2; i++ {
buf[w] = '0';
w++;
}
// digits
w += n;
n = 0;
for e := exp; e > 0; e /= 10 {
n++;
buf[w-n] = byte(e%10 + '0');
}
return string(buf[0:w]);
}
// %f: -ddddddd.ddddd
func FmtF(neg bool, d *Decimal, prec int) string {
buf := new([]byte, 1+Max(d.dp, 1)+1+Max(prec, 0));
w := 0;
// sign
if neg {
buf[w] = '-';
w++;
}
// integer, padded with zeros as needed.
if d.dp > 0 {
var i int;
for i = 0; i < d.dp && i < d.nd; i++ {
buf[w] = d.d[i];
w++;
}
for ; i < d.dp; i++ {
buf[w] = '0';
w++;
}
} else {
buf[w] = '0';
w++;
}
// fraction
if prec > 0 {
buf[w] = '.';
w++;
for i := 0; i < prec; i++ {
if d.dp+i < 0 || d.dp+i >= d.nd {
buf[w] = '0';
} else {
buf[w] = d.d[d.dp+i];
}
w++;
}
}
return string(buf[0:w]);
}
// %b: -ddddddddp+ddd
func FmtB(neg bool, mant uint64, exp int, flt *FloatInfo) string {
var buf [50]byte;
w := len(buf);
exp -= int(flt.mantbits);
esign := byte('+');
if exp < 0 {
esign = '-';
exp = -exp;
}
n := 0;
for exp > 0 || n < 1 {
n++;
w--;
buf[w] = byte(exp%10 + '0');
exp /= 10
}
w--;
buf[w] = esign;
w--;
buf[w] = 'p';
n = 0;
for mant > 0 || n < 1 {
n++;
w--;
buf[w] = byte(mant%10 + '0');
mant /= 10;
}
if neg {
w--;
buf[w] = '-';
}
return string((&buf)[w:len(buf)]);
}
func Max(a, b int) int {
if a > b {
return a;
}
return b;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
export func itoa64(i int64) string {
if i == 0 {
return "0"
}
neg := false; // negative
u := uint(i);
if i < 0 {
neg = true;
u = -u;
}
// Assemble decimal in reverse order.
var b [32]byte;
bp := len(b);
for ; u > 0; u /= 10 {
bp--;
b[bp] = byte(u%10) + '0'
}
if neg { // add sign
bp--;
b[bp] = '-'
}
// BUG return string(b[bp:len(b)])
return string((&b)[bp:len(b)])
}
export func itoa(i int) string {
return itoa64(int64(i));
}
#!/bin/bash
# Copyright 2009 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
set -e
set -x
make clean
make
6g testatof.go
6l testatof.6
6.out
6g testftoa.go
6l testftoa.6
6.out
6g testfp.go
6l testfp.6
6.out
rm -f *.6 6.out
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import "strconv"
type Test struct {
in string;
out string;
}
var tests = []Test {
Test{ "1", "1" },
Test{ "1e23", "1e+23" },
Test{ "100000000000000000000000", "1e+23" },
Test{ "1e-100", "1e-100" },
Test{ "123456700", "1.234567e+08" },
Test{ "99999999999999974834176", "9.999999999999997e+22" },
Test{ "100000000000000000000001", "1.0000000000000001e+23" },
Test{ "100000000000000008388608", "1.0000000000000001e+23" },
Test{ "100000000000000016777215", "1.0000000000000001e+23" },
Test{ "100000000000000016777216", "1.0000000000000003e+23" },
Test{ "-1", "-1" },
Test{ "-0", "0" },
}
func main() {
bad := 0;
for i := 0; i < len(tests); i++ {
t := &tests[i];
f, overflow, ok := strconv.atof64(t.in);
if !ok {
panicln("test", t.in);
}
s := strconv.ftoa64(f, 'g', -1);
if s != t.out {
println("test", t.in, "want", t.out, "got", s);
bad++;
}
}
if bad != 0 {
panic("failed");
}
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bufio";
"fmt";
"os";
"strconv";
"strings";
)
func pow2(i int) float64 {
switch {
case i < 0:
return 1 / pow2(-i);
case i == 0:
return 1;
case i == 1:
return 2;
}
return pow2(i/2) * pow2(i-i/2);
}
// Wrapper around strconv.atof64. Handles dddddp+ddd (binary exponent)
// itself, passes the rest on to strconv.atof64.
func atof64(s string) (f float64, ok bool) {
a := strings.split(s, "p");
if len(a) == 2 {
n, ok := strconv.atoi64(a[0]);
if !ok {
return 0, false;
}
e, ok1 := strconv.atoi(a[1]);
if !ok1 {
println("bad e", a[1]);
return 0, false;
}
v := float64(n);
// We expect that v*pow2(e) fits in a float64,
// but pow2(e) by itself may not. Be careful.
if e <= -1000 {
v *= pow2(-1000);
e += 1000;
for e < 0 {
v /= 2;
e++;
}
return v, true;
}
if e >= 1000 {
v *= pow2(1000);
e -= 1000;
for e > 0 {
v *= 2;
e--;
}
return v, true;
}
return v*pow2(e), true;
}
f1, overflow, ok1 := strconv.atof64(s);
if !ok1 {
return 0, false;
}
return f1, true;
}
// Wrapper around strconv.atof32. Handles dddddp+ddd (binary exponent)
// itself, passes the rest on to strconv.atof32.
func atof32(s string) (f float32, ok bool) {
a := strings.split(s, "p");
if len(a) == 2 {
n, ok := strconv.atoi(a[0]);
if !ok {
println("bad n", a[0]);
return 0, false;
}
e, ok1 := strconv.atoi(a[1]);
if !ok1 {
println("bad p", a[1]);
return 0, false;
}
return float32(float64(n)*pow2(e)), true;
}
f1, overflow, ok1 := strconv.atof32(s);
if !ok1 {
return 0, false;
}
return f1, true;
}
func main()
{
fd, err := os.Open("testfp.txt", os.O_RDONLY, 0);
if err != nil {
panicln("testfp: open testfp.txt:", err.String());
}
b, err1 := bufio.NewBufRead(fd);
if err1 != nil {
panicln("testfp NewBufRead:", err1.String());
}
lineno := 0;
ok := true;
for {
line, err2 := b.ReadLineString('\n', false);
if err2 == bufio.EndOfFile {
break;
}
if err2 != nil {
panicln("testfp: read testfp.txt:", err2.String());
}
lineno++;
if len(line) == 0 || line[0] == '#' {
continue
}
a := strings.split(line, " ");
if len(a) != 4 {
print("testfp.txt:", lineno, ": wrong field count\n");
continue;
}
var s string;
var v float64;
switch a[0] {
case "float64":
var ok bool;
v, ok = atof64(a[2]);
if !ok {
print("testfp.txt:", lineno, ": cannot atof64 ", a[2]);
continue;
}
s = fmt.sprintf(a[1], v);
case "float32":
v1, ok := atof32(a[2]);
if !ok {
print("testfp.txt:", lineno, ": cannot atof32 ", a[2]);
continue;
}
s = fmt.sprintf(a[1], v1);
v = float64(v1);
}
if s != a[3] {
print("testfp.txt:", lineno, ": ", a[0], " ", a[1], " ", a[2], " (", v, ") ",
"want ", a[3], " got ", s, "\n");
ok = false;
}
//else print("testfp.txt:", lineno, ": worked! ", s, "\n");
}
if !ok {
panicln("testfp failed");
}
}
# Floating-point conversion test cases.
# Empty lines and lines beginning with # are ignored.
# The rest have four fields per line: type, format, input, and output.
# The input is given either in decimal or binary scientific notation.
# The output is the string that should be produced by formatting the
# input with the given format.
#
# The formats are as in C's printf, except that %b means print
# binary scientific notation: NpE = N x 2^E.
# TODO:
# Powers of 10.
# Powers of 2.
# %.20g versions.
# random sources
# random targets
# random targets ± half a ULP
# Difficult boundary cases, derived from tables given in
# Vern Paxson, A Program for Testing IEEE Decimal-Binary Conversion
# ftp://ftp.ee.lbl.gov/testbase-report.ps.Z
# Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP
float64 %b 5e+125 6653062250012735p+365
float64 %b 69e+267 4705683757438170p+841
float64 %b 999e-026 6798841691080350p-129
float64 %b 7861e-034 8975675289889240p-153
float64 %b 75569e-254 6091718967192243p-880
float64 %b 928609e-261 7849264900213743p-900
float64 %b 9210917e+080 8341110837370930p+236
float64 %b 84863171e+114 4625202867375927p+353
float64 %b 653777767e+273 5068902999763073p+884
float64 %b 5232604057e-298 5741343011915040p-1010
float64 %b 27235667517e-109 6707124626673586p-380
float64 %b 653532977297e-123 7078246407265384p-422
float64 %b 3142213164987e-294 8219991337640559p-988
float64 %b 46202199371337e-072 5224462102115359p-246
float64 %b 231010996856685e-073 5224462102115359p-247
float64 %b 9324754620109615e+212 5539753864394442p+705
float64 %b 78459735791271921e+049 8388176519442766p+166
float64 %b 272104041512242479e+200 5554409530847367p+670
float64 %b 6802601037806061975e+198 5554409530847367p+668
float64 %b 20505426358836677347e-221 4524032052079546p-722
float64 %b 836168422905420598437e-234 5070963299887562p-760
float64 %b 4891559871276714924261e+222 6452687840519111p+757
# Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP
float64 %b 9e-265 8168427841980010p-930
float64 %b 85e-037 6360455125664090p-169
float64 %b 623e+100 6263531988747231p+289
float64 %b 3571e+263 6234526311072170p+833
float64 %b 81661e+153 6696636728760206p+472
float64 %b 920657e-023 5975405561110124p-109
float64 %b 4603285e-024 5975405561110124p-110
float64 %b 87575437e-309 8452160731874668p-1053
float64 %b 245540327e+122 4985336549131723p+381
float64 %b 6138508175e+120 4985336549131723p+379
float64 %b 83356057653e+193 5986732817132056p+625
float64 %b 619534293513e+124 4798406992060657p+399
float64 %b 2335141086879e+218 5419088166961646p+713
float64 %b 36167929443327e-159 8135819834632444p-536
float64 %b 609610927149051e-255 4576664294594737p-850
float64 %b 3743626360493413e-165 6898586531774201p-549
float64 %b 94080055902682397e-242 6273271706052298p-800
float64 %b 899810892172646163e+283 7563892574477827p+947
float64 %b 7120190517612959703e+120 5385467232557565p+409
float64 %b 25188282901709339043e-252 5635662608542340p-825
float64 %b 308984926168550152811e-052 5644774693823803p-157
float64 %b 6372891218502368041059e+064 4616868614322430p+233
# Table 3: Stress Inputs for Converting 53-bit Binary to Decimal, < 1/2 ULP
float64 %.0e 8511030020275656p-342 9e-88
float64 %.1e 5201988407066741p-824 4.6e-233
float64 %.2e 6406892948269899p+237 1.41e+87
float64 %.3e 8431154198732492p+72 3.981e+37
float64 %.4e 6475049196144587p+99 4.1040e+45
float64 %.5e 8274307542972842p+726 2.92084e+234
float64 %.6e 5381065484265332p-456 2.891946e-122
float64 %.7e 6761728585499734p-1057 4.3787718e-303
float64 %.8e 7976538478610756p+376 1.22770163e+129
float64 %.9e 5982403858958067p+377 1.841552452e+129
float64 %.10e 5536995190630837p+93 5.4835744350e+43
float64 %.11e 7225450889282194p+710 3.89190181146e+229
float64 %.12e 7225450889282194p+709 1.945950905732e+229
float64 %.13e 8703372741147379p+117 1.4460958381605e+51
float64 %.14e 8944262675275217p-1001 4.17367747458531e-286
float64 %.15e 7459803696087692p-707 1.107950772878888e-197
float64 %.16e 6080469016670379p-381 1.2345501366327440e-99
float64 %.17e 8385515147034757p+721 9.25031711960365024e+232
float64 %.18e 7514216811389786p-828 4.198047150284889840e-234
float64 %.19e 8397297803260511p-345 1.1716315319786511046e-88
float64 %.20e 6733459239310543p+202 4.32810072844612493629e+76
float64 %.21e 8091450587292794p-473 3.317710118160031081518e-127
# Table 4: Stress Inputs for Converting 53-bit Binary to Decimal, > 1/2 ULP
float64 %.0e 6567258882077402p+952 3e+302
float64 %.1e 6712731423444934p+535 7.6e+176
float64 %.2e 6712731423444934p+534 3.78e+176
float64 %.3e 5298405411573037p-957 4.350e-273
float64 %.4e 5137311167659507p-144 2.3037e-28
float64 %.5e 6722280709661868p+363 1.26301e+125
float64 %.6e 5344436398034927p-169 7.142211e-36
float64 %.7e 8369123604277281p-853 1.3934574e-241
float64 %.8e 8995822108487663p-780 1.41463449e-219
float64 %.9e 8942832835564782p-383 4.539277920e-100
float64 %.10e 8942832835564782p-384 2.2696389598e-100
float64 %.11e 8942832835564782p-385 1.13481947988e-100
float64 %.12e 6965949469487146p-249 7.700366561890e-60
float64 %.13e 6965949469487146p-250 3.8501832809448e-60
float64 %.14e 6965949469487146p-251 1.92509164047238e-60
float64 %.15e 7487252720986826p+548 6.898586531774201e+180
float64 %.16e 5592117679628511p+164 1.3076622631878654e+65
float64 %.17e 8887055249355788p+665 1.36052020756121240e+216
float64 %.18e 6994187472632449p+690 3.592810217475959676e+223
float64 %.19e 8797576579012143p+588 8.9125197712484551899e+192
float64 %.20e 7363326733505337p+272 5.58769757362301140950e+97
float64 %.21e 8549497411294502p-448 1.176257830728540379990e-119
# Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP
# NOTE: The lines with exponent p-149 have been changed from the
# paper. Those entries originally read p-150 and had a mantissa
# twice as large (and even), but IEEE single-precision has no p-150:
# that's the start of the denormals.
float32 %b 5e-20 15474250p-88
float32 %b 67e+14 12479722p+29
float32 %b 985e+15 14333636p+36
# float32 %b 7693e-42 10979816p-150
float32 %b 7693e-42 5489908p-149
float32 %b 55895e-16 12888509p-61
# float32 %b 996622e-44 14224264p-150
float32 %b 996622e-44 7112132p-149
float32 %b 7038531e-32 11420669p-107
# float32 %b 60419369e-46 8623340p-150
float32 %b 60419369e-46 4311670p-149
float32 %b 702990899e-20 16209866p-61
# float32 %b 6930161142e-48 9891056p-150
float32 %b 6930161142e-48 4945528p-149
float32 %b 25933168707e+13 14395800p+54
float32 %b 596428896559e+20 12333860p+82
# Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP
float32 %b 3e-23 9507380p-98
float32 %b 57e+18 12960300p+42
float32 %b 789e-35 10739312p-130
float32 %b 2539e-18 11990089p-72
float32 %b 76173e+28 9845130p+86
float32 %b 887745e-11 9760860p-40
float32 %b 5382571e-37 11447463p-124
float32 %b 82381273e-35 8554961p-113
float32 %b 750486563e-38 9975678p-120
float32 %b 3752432815e-39 9975678p-121
float32 %b 75224575729e-45 13105970p-137
float32 %b 459926601011e+15 12466336p+65
# Table 16: Stress Inputs for Converting 24-bit Binary to Decimal, < 1/2 ULP
float32 %.0e 12676506p-102 2e-24
float32 %.1e 12676506p-103 1.2e-24
float32 %.2e 15445013p+86 1.19e+33
float32 %.3e 13734123p-138 3.941e-35
float32 %.4e 12428269p-130 9.1308e-33
float32 %.5e 15334037p-146 1.71900e-37
float32 %.6e 11518287p-41 5.237910e-06
float32 %.7e 12584953p-145 2.8216440e-37
float32 %.8e 15961084p-125 3.75243281e-31
float32 %.9e 14915817p-146 1.672120916e-37
float32 %.10e 10845484p-102 2.1388945814e-24
float32 %.11e 16431059p-61 7.12583594561e-12
# Table 17: Stress Inputs for Converting 24-bit Binary to Decimal, > 1/2 ULP
float32 %.0e 16093626p+69 1e+28
float32 %.1e 9983778p+25 3.4e+14
float32 %.2e 12745034p+104 2.59e+38
float32 %.3e 12706553p+72 6.001e+28
float32 %.4e 11005028p+45 3.8721e+20
float32 %.5e 15059547p+71 3.55584e+28
float32 %.6e 16015691p-99 2.526831e-23
float32 %.7e 8667859p+56 6.2458507e+23
float32 %.8e 14855922p-82 3.07213267e-18
float32 %.9e 14855922p-83 1.536066333e-18
float32 %.10e 10144164p-110 7.8147796834e-27
float32 %.11e 13248074p+95 5.24810279937e+35
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import "strconv"
type Test struct {
f float64;
fmt byte;
prec int;
s string;
}
var tests = []Test {
Test{ 1, 'e', 5, "1.00000e+00" },
Test{ 1, 'f', 5, "1.00000" },
Test{ 1, 'g', 5, "1" },
Test{ 1, 'g', -1, "1" },
Test{ 0, 'e', 5, "0.00000e+00" },
Test{ 0, 'f', 5, "0.00000" },
Test{ 0, 'g', 5, "0" },
Test{ 0, 'g', -1, "0" },
Test{ -1, 'e', 5, "-1.00000e+00" },
Test{ -1, 'f', 5, "-1.00000" },
Test{ -1, 'g', 5, "-1" },
Test{ -1, 'g', -1, "-1" },
Test{ 12, 'e', 5, "1.20000e+01" },
Test{ 12, 'f', 5, "12.00000" },
Test{ 12, 'g', 5, "12" },
Test{ 12, 'g', -1, "12" },
Test{ 123456700, 'e', 5, "1.23457e+08" },
Test{ 123456700, 'f', 5, "123456700.00000" },
Test{ 123456700, 'g', 5, "1.2346e+08" },
Test{ 123456700, 'g', -1, "1.234567e+08" },
Test{ 1.2345e6, 'e', 5, "1.23450e+06" },
Test{ 1.2345e6, 'f', 5, "1234500.00000" },
Test{ 1.2345e6, 'g', 5, "1.2345e+06" },
Test{ 1e23, 'e', 17, "9.99999999999999916e+22" },
Test{ 1e23, 'f', 17, "99999999999999991611392.00000000000000000" },
Test{ 1e23, 'g', 17, "9.9999999999999992e+22" },
Test{ 1e23, 'e', -1, "1e+23" },
Test{ 1e23, 'f', -1, "100000000000000000000000" },
Test{ 1e23, 'g', -1, "1e+23" },
Test{ 1e23-8.5e6, 'e', 17, "9.99999999999999748e+22" },
Test{ 1e23-8.5e6, 'f', 17, "99999999999999974834176.00000000000000000" },
Test{ 1e23-8.5e6, 'g', 17, "9.9999999999999975e+22" },
Test{ 1e23-8.5e6, 'e', -1, "9.999999999999997e+22" },
Test{ 1e23-8.5e6, 'f', -1, "99999999999999970000000" },
Test{ 1e23-8.5e6, 'g', -1, "9.999999999999997e+22" },
Test{ 1e23+8.5e6, 'e', 17, "1.00000000000000008e+23" },
Test{ 1e23+8.5e6, 'f', 17, "100000000000000008388608.00000000000000000" },
Test{ 1e23+8.5e6, 'g', 17, "1.0000000000000001e+23" },
Test{ 1e23+8.5e6, 'e', -1, "1.0000000000000001e+23" },
Test{ 1e23+8.5e6, 'f', -1, "100000000000000010000000" },
Test{ 1e23+8.5e6, 'g', -1, "1.0000000000000001e+23" },
Test{ 32, 'g', -1, "32" },
}
func main() {
bad := 0;
if strconv.floatsize != 32 {
panic("floatsize: ", strconv.floatsize);
}
for i := 0; i < len(tests); i++ {
t := &tests[i];
s := strconv.ftoa64(t.f, t.fmt, t.prec);
if s != t.s {
println("test", t.f, string(t.fmt), t.prec, "want", t.s, "got", s);
bad++;
}
if float64(float32(t.f)) == t.f {
s := strconv.ftoa32(float32(t.f), t.fmt, t.prec);
if s != t.s {
println("test32", t.f, string(t.fmt), t.prec, "want", t.s, "got", s);
bad++;
}
}
}
if bad != 0 {
panic("failed");
}
}
......@@ -115,272 +115,3 @@ export func join(a *[]string, sep string) string {
}
return string(b)
}
// Convert decimal string to unsigned integer.
// TODO: Doesn't check for overflow.
export func atoui64(s string) (i uint64, ok bool) {
// empty string bad
if len(s) == 0 {
return 0, false
}
// pick off zero
if s == "0" {
return 0, true
}
// otherwise, leading zero bad
if s[0] == '0' {
return 0, false
}
// parse number
n := uint64(0);
for i := 0; i < len(s); i++ {
if s[i] < '0' || s[i] > '9' {
return 0, false
}
n = n*10 + uint64(s[i] - '0')
}
return n, true
}
// Convert decimal string to integer.
// TODO: Doesn't check for overflow.
export func atoi64(s string) (i int64, ok bool) {
// empty string bad
if len(s) == 0 {
return 0, false
}
// pick off leading sign
neg := false;
if s[0] == '+' {
s = s[1:len(s)]
} else if s[0] == '-' {
neg = true;
s = s[1:len(s)]
}
var un uint64;
un, ok = atoui64(s);
if !ok {
return 0, false
}
n := int64(un);
if neg {
n = -n
}
return n, true
}
export func atoui(s string) (i uint, ok bool) {
ii, okok := atoui64(s);
i = uint(ii);
return i, okok
}
export func atoi(s string) (i int, ok bool) {
ii, okok := atoi64(s);
i = int(ii);
return i, okok
}
export func ltoa(i int64) string {
if i == 0 {
return "0"
}
neg := false; // negative
u := uint(i);
if i < 0 {
neg = true;
u = -u;
}
// Assemble decimal in reverse order.
var b [32]byte;
bp := len(b);
for ; u > 0; u /= 10 {
bp--;
b[bp] = byte(u%10) + '0'
}
if neg { // add sign
bp--;
b[bp] = '-'
}
// BUG return string(b[bp:len(b)])
return string((&b)[bp:len(b)])
}
export func itoa(i int) string {
return ltoa(int64(i));
}
// Convert float64 to string. No control over format.
// Result not great; only useful for simple debugging.
export func f64toa(v float64) string {
var buf [20]byte;
const n = 7; // digits printed
e := 0; // exp
var sign byte = '+';
if(v != 0) {
// sign
if(v < 0) {
v = -v;
sign = '-';
}
// normalize
for v >= 10 {
e++;
v /= 10;
}
for v < 1 {
e--;
v *= 10;
}
// round
var h float64 = 5;
for i := 0; i < n; i++ {
h /= 10;
}
v += h;
if v >= 10 {
e++;
v /= 10;
}
}
// format +d.dddd+edd
buf[0] = sign;
for i := 0; i < n; i++ {
s := int64(v);
buf[i+2] = byte(s)+'0';
v -= float64(s);
v *= 10;
}
buf[1] = buf[2];
buf[2] = '.';
buf[n+2] = 'e';
buf[n+3] = '+';
if e < 0 {
e = -e;
buf[n+3] = '-';
}
// TODO: exponents > 99?
buf[n+4] = byte((e/10) + '0');
buf[n+5] = byte((e%10) + '0');
return string(buf)[0:n+6]; // TODO: should be able to slice buf
}
export func ftoa(v float) string {
return f64toa(float64(v));
}
export func f32toa(v float32) string {
return f64toa(float64(v));
}
// Simple conversion of string to floating point.
// TODO: make much better. THIS CODE IS VERY WEAK.
// Lets through some poor cases such as "." and "e4" and "1e-". Fine.
export func atof64(s string) (f float64, ok bool) {
// empty string bad
if len(s) == 0 {
return 0, false
}
// pick off leading sign
neg := false;
if s[0] == '+' {
s = s[1:len(s)]
} else if s[0] == '-' {
neg = true;
s = s[1:len(s)]
}
// parse number
// first, left of the decimal point.
n := uint64(0);
i := 0;
for ; i < len(s); i++ {
if s[i] == '.' || s[i] == 'e' || s[i] == 'E' {
break
}
if s[i] < '0' || s[i] > '9' {
return 0, false
}
n = n*10 + uint64(s[i] - '0')
}
result := float64(n);
if i != len(s) {
frac := uint64(0);
scale := float64(1);
// decimal and fraction
if s[i] == '.' {
i++;
for ; i < len(s); i++ {
if s[i] == 'e' || s[i] == 'E' {
break
}
if s[i] < '0' || s[i] > '9' {
return 0, false
}
frac = frac*10 + uint64(s[i] - '0');
scale = scale * 10.0;
}
}
result += float64(frac)/scale;
// exponent
if i != len(s) { // must be 'e' or 'E'
i++;
eneg := false;
if i < len(s) && s[i] == '-' {
eneg = true;
i++;
} else if i < len(s) && s[i] == '+' {
i++;
}
// this works ok for "1e+" - fine.
exp := uint64(0);
for ; i < len(s); i++ {
if s[i] < '0' || s[i] > '9' {
return 0, false
}
exp = exp*10 + uint64(s[i] - '0');
}
if eneg {
for exp > 0 {
result /= 10.0;
exp--;
}
} else {
for exp > 0 {
result *= 10.0;
exp--;
}
}
}
}
if neg {
result = -result
}
return result, true
}
export func atof(s string) (f float, ok bool) {
a, b := atof64(s);
return float(a), b;
}
export func atof32(s string) (f float32, ok bool) {
a, b := atof64(s);
return float32(a), b;
}
......@@ -11,6 +11,12 @@ xcd() {
builtin cd $1
}
(xcd lib/strconv
make clean
time make
bash test.bash
) || exit $?
(xcd lib/reflect
make clean
time make
......
......@@ -10,7 +10,7 @@
package main
import (
"strings";
"strconv";
)
func f(left, right *chan int) {
......@@ -21,7 +21,7 @@ func main() {
var n = 10000;
if sys.argc() > 1 {
var ok bool;
n, ok = strings.atoi(sys.argv(1));
n, ok = strconv.atoi(sys.argv(1));
if !ok {
print("bad arg\n");
sys.exit(1);
......
......@@ -44,8 +44,8 @@ func main() {
E(f.s("\tb ").b(7), "\tb 111");
E(f.s("\tb64 ").b64(B64), "\tb64 1111111111111111111111111111111111111111111111111111111111111111");
E(f.s("\te ").e64(1.), "\te 1.000000e+00");
E(f.s("\te ").e64(1234.5678e3), "\te 1.234567e+06");
E(f.s("\te ").e64(1234.5678e-8), "\te 1.234567e-05");
E(f.s("\te ").e64(1234.5678e3), "\te 1.234568e+06");
E(f.s("\te ").e64(1234.5678e-8), "\te 1.234568e-05");
E(f.s("\te ").e64(-7.0), "\te -7.000000e+00");
E(f.s("\te ").e64(-1e-9), "\te -1.000000e-09");
E(f.s("\tf ").f64(1234.5678e3), "\tf 1234567.800000");
......@@ -53,9 +53,9 @@ func main() {
E(f.s("\tf ").f64(-7.0), "\tf -7.000000");
E(f.s("\tf ").f64(-1e-9), "\tf -0.000000");
E(f.s("\tg ").g64(1234.5678e3), "\tg 1234567.8");
E(f.s("\tg ").g64(1234.5678e-8), "\tg 0.000012");
E(f.s("\tg ").g64(-7.0), "\tg -7.");
E(f.s("\tg ").g64(-1e-9), "\tg -0.");
E(f.s("\tg ").g64(1234.5678e-8), "\tg 1.2345678e-05");
E(f.s("\tg ").g64(-7.0), "\tg -7");
E(f.s("\tg ").g64(-1e-9), "\tg -1e-09");
E(f.s("\tc ").c('x'), "\tc x");
E(f.s("\tc ").c(0xe4), "\tc ä");
E(f.s("\tc ").c(0x672c), "\tc 本");
......@@ -74,9 +74,9 @@ func main() {
E(f.s("\t-20.5s\t|").wp(-20,5).s("qwertyuiop").s("|"), "\t-20.5s\t|qwert |");
E(f.s("\t20c\t|").w(20).c('x').s("|"), "\t20c\t| x|");
E(f.s("\t-20c\t|").w(-20).c('x').s("|"), "\t-20c\t|x |");
E(f.s("\t20e\t|").w(20).e(1.2345e3).s("|"), "\t20e\t| 1.234500e+03|");
E(f.s("\t20e\t|").w(20).e(1.2345e-3).s("|"), "\t20e\t| 1.234500e-03|");
E(f.s("\t-20e\t|").w(-20).e(1.2345e3).s("|"), "\t-20e\t|1.234500e+03 |");
E(f.s("\t20e\t|").wp(20, 6).e(1.2345e3).s("|"), "\t20e\t| 1.234500e+03|");
E(f.s("\t20e\t|").wp(20, 6).e(1.2345e-3).s("|"), "\t20e\t| 1.234500e-03|");
E(f.s("\t-20e\t|").wp(-20, 6).e(1.2345e3).s("|"), "\t-20e\t|1.234500e+03 |");
E(f.s("\t20.8e\t|").wp(20,8).e(1.2345e3).s("|"), "\t20.8e\t| 1.23450000e+03|");
E(f.s("\t20f\t|").w(20).f64(1.23456789e3).s("|"), "\t20f\t| 1234.567890|");
E(f.s("\t20f\t|").w(20).f64(1.23456789e-3).s("|"), "\t20f\t| 0.001235|");
......@@ -85,10 +85,10 @@ func main() {
E(f.s("\t20.8f\t|").wp(20,8).f64(1.23456789e3).s("|"), "\t20.8f\t| 1234.56789000|");
E(f.s("\t20.8f\t|").wp(20,8).f64(1.23456789e-3).s("|"), "\t20.8f\t| 0.00123457|");
E(f.s("\tg\t|").g64(1.23456789e3).s("|"), "\tg\t|1234.56789|");
E(f.s("\tg\t|").g64(1.23456789e-3).s("|"), "\tg\t|0.001235|");
E(f.s("\tg\t|").g64(1.23456789e20).s("|"), "\tg\t|1.234567e+20|");
E(f.s("\tg\t|").g64(1.23456789e-3).s("|"), "\tg\t|0.00123456789|");
E(f.s("\tg\t|").g64(1.23456789e20).s("|"), "\tg\t|1.23456789e+20|");
E(f.s("\tE\t|").w(20).g64(sys.Inf(1)).s("|"), "\tE\t| Inf|");
E(f.s("\tE\t|").w(20).g64(sys.Inf(1)).s("|"), "\tE\t| +Inf|");
E(f.s("\tF\t|").w(-20).g64(sys.Inf(-1)).s("|"), "\tF\t|-Inf |");
E(f.s("\tG\t|").w(20).g64(sys.NaN()).s("|"), "\tG\t| NaN|");
}
......@@ -6,7 +6,10 @@
package main
import strings "strings"
import (
"strconv";
"strings";
)
func split(s, sep string) *[]string {
a := strings.split(s, sep);
......@@ -31,8 +34,8 @@ func explode(s string) *[]string {
}
func itoa(i int) string {
s := strings.itoa(i);
n, ok := strings.atoi(s);
s := strconv.itoa(i);
n, ok := strconv.atoi(s);
if n != i {
print("itoa: ", i, " ", s, "\n");
panic("itoa")
......@@ -91,17 +94,17 @@ func main() {
}
{
n, ok := strings.atoi("0"); if n != 0 || !ok { panic("atoi 0") }
n, ok = strings.atoi("-1"); if n != -1 || !ok { panic("atoi -1") }
n, ok = strings.atoi("+345"); if n != 345 || !ok { panic("atoi +345") }
n, ok = strings.atoi("9999"); if n != 9999 || !ok { panic("atoi 9999") }
n, ok = strings.atoi("20ba"); if n != 0 || ok { panic("atoi 20ba") }
n, ok = strings.atoi("hello"); if n != 0 || ok { panic("hello") }
n, ok := strconv.atoi("0"); if n != 0 || !ok { panic("atoi 0") }
n, ok = strconv.atoi("-1"); if n != -1 || !ok { panic("atoi -1") }
n, ok = strconv.atoi("+345"); if n != 345 || !ok { panic("atoi +345") }
n, ok = strconv.atoi("9999"); if n != 9999 || !ok { panic("atoi 9999") }
n, ok = strconv.atoi("20ba"); if n != 0 || ok { panic("atoi 20ba") }
n, ok = strconv.atoi("hello"); if n != 0 || ok { panic("hello") }
}
if strings.ftoa(1e6) != "+1.000000e+06" { panic("ftoa 1e6") }
if strings.ftoa(-1e-6) != "-1.000000e-06" { panic("ftoa -1e-6") }
if strings.ftoa(-1.234567e-6) != "-1.234567e-06" { panic("ftoa -1.234567e-6") }
if strconv.ftoa(1e6, 'e', 6) != "1.000000e+06" { panic("ftoa 1e6") }
if strconv.ftoa(-1e-6, 'e', 6) != "-1.000000e-06" { panic("ftoa -1e-6") }
if strconv.ftoa(-1.234567e-6, 'e', 6) != "-1.234567e-06" { panic("ftoa -1.234567e-6") }
if itoa(0) != "0" { panic("itoa 0") }
if itoa(12345) != "12345" { panic("itoa 12345") }
......@@ -111,7 +114,7 @@ func main() {
// if itoa(-1<<63) != "-9223372036854775808" { panic("itoa 1<<63") }
{
a, ok := strings.atof64("-1.2345e4");
a, overflow, ok := strconv.atof64("-1.2345e4");
if !ok || a != -12345. { panic(a, "atof64 -1.2345e4") }
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment