Commit 19418557 authored by Adam Langley's avatar Adam Langley

Reland a112249da741, this time with missing file.

parent 8c3d2f01
......@@ -47,6 +47,19 @@ if ! (cd lib9 && which quietgcc) >/dev/null 2>&1; then
exit 1
fi
if make --version | head -n 1 | grep -c '^GNU Make' >> /dev/null ; then
MAKEVERSION=$(make --version | head -n 1 | cut -d' ' -f3)
MAKEMAJOR=$(echo $MAKEVERSION | cut -d'.' -f 1)
MAKEMINOR=$(echo $MAKEVERSION | cut -d'.' -f 2)
if [ "$MAKEMAJOR" -lt 3 -o "$MAKEMAJOR" -eq 3 -a "$MAKEMINOR" -le 80 ]; then
echo "Your make is too old. You appear to have $MAKEMAJOR.$MAKEMINOR, but we need at least 3.81."
exit 1
fi
fi
MAKEVERSION=$(make --version | head -n 1 | cut -d' ' -f3)
bash clean.bash
for i in lib9 libbio libmach cmd pkg libcgo cmd/cgo cmd/ebnflint cmd/godoc cmd/gofmt cmd/goyacc cmd/hgpatch
......
archive/tar.install: bytes.install io.install os.install strconv.install strings.install
asn1.install: fmt.install os.install reflect.install strconv.install strings.install time.install
big.install:
big.install: rand.install
bignum.install: fmt.install
bufio.install: io.install os.install strconv.install utf8.install
bytes.install: os.install unicode.install utf8.install
......@@ -19,8 +19,8 @@ crypto/rc4.install: os.install strconv.install
crypto/rsa.install: big.install bytes.install crypto/subtle.install hash.install io.install os.install
crypto/sha1.install: hash.install os.install
crypto/subtle.install:
crypto/tls.install: bufio.install bytes.install container/list.install crypto/hmac.install crypto/md5.install crypto/rc4.install crypto/rsa.install crypto/sha1.install crypto/subtle.install fmt.install hash.install io.install net.install os.install strings.install time.install
crypto/x509.install: asn1.install big.install crypto/rsa.install os.install
crypto/tls.install: bufio.install bytes.install container/list.install crypto/hmac.install crypto/md5.install crypto/rc4.install crypto/rsa.install crypto/sha1.install crypto/subtle.install crypto/x509.install fmt.install hash.install io.install net.install os.install strings.install time.install
crypto/x509.install: asn1.install big.install container/vector.install crypto/rsa.install os.install time.install
debug/dwarf.install: encoding/binary.install os.install strconv.install
debug/macho.install: bytes.install debug/dwarf.install encoding/binary.install fmt.install io.install os.install strconv.install
debug/elf.install: bytes.install debug/dwarf.install encoding/binary.install fmt.install io.install os.install strconv.install
......@@ -43,7 +43,7 @@ fmt.install: io.install os.install reflect.install strconv.install utf8.install
go/ast.install: fmt.install go/token.install unicode.install utf8.install
go/doc.install: container/vector.install go/ast.install go/token.install io.install regexp.install sort.install strings.install template.install
go/parser.install: bytes.install container/vector.install fmt.install go/ast.install go/scanner.install go/token.install io.install os.install path.install strings.install
go/printer.install: bytes.install container/vector.install fmt.install go/ast.install go/token.install io.install os.install reflect.install runtime.install strings.install tabwriter.install
go/printer.install: bytes.install fmt.install go/ast.install go/token.install io.install os.install reflect.install runtime.install strings.install tabwriter.install
go/scanner.install: bytes.install container/vector.install fmt.install go/token.install io.install os.install sort.install strconv.install unicode.install utf8.install
go/token.install: fmt.install strconv.install
gob.install: bytes.install fmt.install io.install math.install os.install reflect.install sync.install
......
......@@ -14,7 +14,8 @@ type Word uintptr
const (
_S = uintptr(unsafe.Sizeof(Word(0))); // TODO(gri) should Sizeof return a uintptr?
_W = _S * 8;
_logW = (0x650 >> _S) & 7;
_W = 1 << _logW;
_B = 1 << _W;
_M = _B - 1;
_W2 = _W / 2;
......@@ -213,7 +214,7 @@ func divStep(x1, x0, y Word) (q, r Word) {
// Number of leading zeros in x.
func leadingZeros(x Word) (n uint) {
if x == 0 {
return uint(_W)
return _W
}
for x&(1<<(_W-1)) == 0 {
n++;
......@@ -235,7 +236,7 @@ func divWW_g(x1, x0, y Word) (q, r Word) {
if y > x1 {
if z != 0 {
y <<= z;
x1 = (x1 << z) | (x0 >> (uint(_W) - z));
x1 = (x1 << z) | (x0 >> (_W - z));
x0 <<= z;
}
q0, x0 = divStep(x1, x0, y);
......@@ -245,7 +246,7 @@ func divWW_g(x1, x0, y Word) (q, r Word) {
x1 -= y;
q1 = 1;
} else {
z1 := uint(_W) - z;
z1 := _W - z;
y <<= z;
x2 := x1 >> z1;
x1 = (x1 << z) | (x0 >> z1);
......
......@@ -119,40 +119,6 @@ func (z *Int) Mod(x, y *Int) (r *Int) {
func div(q, r, x, y *Int) {
if len(y.abs) == 0 {
panic("Divide by zero undefined")
}
if cmpNN(x.abs, y.abs) < 0 {
q.neg = false;
q.abs = nil;
r.neg = y.neg;
src := x.abs;
dst := x.abs;
if r == x {
dst = nil
}
r.abs = makeN(dst, len(src), false);
for i, v := range src {
r.abs[i] = v
}
return;
}
if len(y.abs) == 1 {
var rprime Word;
q.abs, rprime = divNW(q.abs, x.abs, y.abs[0]);
if rprime > 0 {
r.abs = makeN(r.abs, 1, false);
r.abs[0] = rprime;
r.neg = x.neg;
}
q.neg = len(q.abs) > 0 && x.neg != y.neg;
return;
}
q.neg = x.neg != y.neg;
r.neg = x.neg;
q.abs, r.abs = divNN(q.abs, r.abs, x.abs, y.abs);
......@@ -168,15 +134,13 @@ func (z *Int) Neg(x *Int) *Int {
}
// TODO(gri) Should this be x.Cmp(y) instead?
// CmpInt compares x and y. The result is
// Cmp compares x and y. The result is
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func CmpInt(x, y *Int) (r int) {
func (x *Int) Cmp(y *Int) (r int) {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
......@@ -307,7 +271,7 @@ func (z *Int) Len() int {
return 0
}
return len(z.abs)*int(_W) - int(leadingZeros(z.abs[len(z.abs)-1]));
return len(z.abs)*_W - int(leadingZeros(z.abs[len(z.abs)-1]));
}
......@@ -320,52 +284,12 @@ func (z *Int) Exp(x, y, m *Int) *Int {
return z;
}
z.Set(x);
v := y.abs[len(y.abs)-1];
// It's invalid for the most significant word to be zero, therefore we
// will find a one bit.
shift := leadingZeros(v) + 1;
v <<= shift;
const mask = 1 << (_W - 1);
// We walk through the bits of the exponent one by one. Each time we see
// a bit, we square, thus doubling the power. If the bit is a one, we
// also multiply by x, thus adding one to the power.
w := int(_W) - int(shift);
for j := 0; j < w; j++ {
z.Mul(z, z);
if v&mask != 0 {
z.Mul(z, x)
}
if m != nil {
z.Mod(z, m)
}
v <<= 1;
}
for i := len(y.abs) - 2; i >= 0; i-- {
v = y.abs[i];
for j := 0; j < int(_W); j++ {
z.Mul(z, z);
if v&mask != 0 {
z.Mul(z, x)
}
if m != nil {
z.Mod(z, m)
}
v <<= 1;
}
var mWords []Word;
if m != nil {
mWords = m.abs
}
z.abs = expNNN(z.abs, x.abs, y.abs, mWords);
z.neg = x.neg && y.abs[0]&1 == 1;
return z;
}
......@@ -427,3 +351,20 @@ func GcdInt(d, x, y, a, b *Int) {
*d = *A;
}
// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
// If it returns true, z is prime with probability 1 - 1/4^n.
// If it returns false, z is not prime.
func ProbablyPrime(z *Int, reps int) bool { return !z.neg && probablyPrime(z.abs, reps) }
// Rsh sets z = x >> s and returns z.
func (z *Int) Rsh(x *Int, n int) *Int {
removedWords := n / _W;
z.abs = makeN(z.abs, len(x.abs)-removedWords, false);
z.neg = x.neg;
shiftRight(z.abs, x.abs[removedWords:len(x.abs)], n%_W);
z.abs = normN(z.abs);
return z;
}
......@@ -46,7 +46,7 @@ func TestSetZ(t *testing.T) {
for _, a := range sumZZ {
var z Int;
z.Set(a.z);
if CmpInt(&z, a.z) != 0 {
if (&z).Cmp(a.z) != 0 {
t.Errorf("got z = %v; want %v", z, a.z)
}
}
......@@ -56,7 +56,7 @@ func TestSetZ(t *testing.T) {
func testFunZZ(t *testing.T, msg string, f funZZ, a argZZ) {
var z Int;
f(&z, a.x, a.y);
if CmpInt(&z, a.z) != 0 {
if (&z).Cmp(a.z) != 0 {
t.Errorf("%s%+v\n\tgot z = %v; want %v", msg, a, &z, a.z)
}
}
......@@ -165,7 +165,7 @@ func TestSetString(t *testing.T) {
continue
}
if CmpInt(n, new(Int).New(test.out)) != 0 {
if n.Cmp(new(Int).New(test.out)) != 0 {
t.Errorf("#%d (input '%s') got: %s want: %d\n", i, test.in, n, test.out)
}
}
......@@ -196,7 +196,7 @@ func TestDivSigns(t *testing.T) {
expectedQ := new(Int).New(test.q);
expectedR := new(Int).New(test.r);
if CmpInt(q, expectedQ) != 0 || CmpInt(r, expectedR) != 0 {
if q.Cmp(expectedQ) != 0 || r.Cmp(expectedR) != 0 {
t.Errorf("#%d: got (%s, %s) want (%s, %s)", i, q, r, expectedQ, expectedR)
}
}
......@@ -251,7 +251,7 @@ func checkDiv(x, y []byte) bool {
q, r := new(Int).Div(u, v);
if CmpInt(r, v) >= 0 {
if r.Cmp(v) >= 0 {
return false
}
......@@ -259,7 +259,7 @@ func checkDiv(x, y []byte) bool {
uprime.Mul(uprime, v);
uprime.Add(uprime, r);
return CmpInt(uprime, u) == 0;
return uprime.Cmp(u) == 0;
}
......@@ -276,6 +276,12 @@ var divTests = []divTest{
"50911",
"1",
},
divTest{
"11510768301994997771168",
"1328165573307167369775",
"8",
"885443715537658812968",
},
}
......@@ -293,7 +299,7 @@ func TestDiv(t *testing.T) {
q, r := new(Int).Div(x, y);
if CmpInt(q, expectedQ) != 0 || CmpInt(r, expectedR) != 0 {
if q.Cmp(expectedQ) != 0 || r.Cmp(expectedR) != 0 {
t.Errorf("#%d got (%s, %s) want (%s, %s)", i, q, r, expectedQ, expectedR)
}
}
......@@ -401,7 +407,7 @@ func TestExp(t *testing.T) {
}
z := new(Int).Exp(x, y, m);
if CmpInt(z, out) != 0 {
if z.Cmp(out) != 0 {
t.Errorf("#%d got %s want %s", i, z, out)
}
}
......@@ -421,7 +427,7 @@ func checkGcd(aBytes, bBytes []byte) bool {
y.Mul(y, b);
x.Add(x, y);
return CmpInt(x, d) == 0;
return x.Cmp(d) == 0;
}
......@@ -451,12 +457,95 @@ func TestGcd(t *testing.T) {
GcdInt(d, x, y, a, b);
if CmpInt(expectedX, x) != 0 ||
CmpInt(expectedY, y) != 0 ||
CmpInt(expectedD, d) != 0 {
if expectedX.Cmp(x) != 0 ||
expectedY.Cmp(y) != 0 ||
expectedD.Cmp(d) != 0 {
t.Errorf("#%d got (%s %s %s) want (%s %s %s)", i, x, y, d, expectedX, expectedY, expectedD)
}
}
quick.Check(checkGcd, nil);
}
var primes = []string{
"2",
"3",
"5",
"7",
"11",
"98920366548084643601728869055592650835572950932266967461790948584315647051443",
"94560208308847015747498523884063394671606671904944666360068158221458669711639",
// http://primes.utm.edu/lists/small/small3.html
"449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163",
"230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593",
"5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993",
"203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123",
}
var composites = []string{
"21284175091214687912771199898307297748211672914763848041968395774954376176754",
"6084766654921918907427900243509372380954290099172559290432744450051395395951",
"84594350493221918389213352992032324280367711247940675652888030554255915464401",
"82793403787388584738507275144194252681",
}
func TestProbablyPrime(t *testing.T) {
for i, s := range primes {
p, _ := new(Int).SetString(s, 10);
if !ProbablyPrime(p, 20) {
t.Errorf("#%d prime found to be non-prime", i)
}
}
for i, s := range composites {
c, _ := new(Int).SetString(s, 10);
if ProbablyPrime(c, 20) {
t.Errorf("#%d composite found to be prime", i)
}
}
}
type rshTest struct {
in string;
shift int;
out string;
}
var rshTests = []rshTest{
rshTest{"0", 0, "0"},
rshTest{"0", 1, "0"},
rshTest{"0", 2, "0"},
rshTest{"1", 0, "1"},
rshTest{"1", 1, "0"},
rshTest{"1", 2, "0"},
rshTest{"2", 0, "2"},
rshTest{"2", 1, "1"},
rshTest{"2", 2, "0"},
rshTest{"4294967296", 0, "4294967296"},
rshTest{"4294967296", 1, "2147483648"},
rshTest{"4294967296", 2, "1073741824"},
rshTest{"18446744073709551616", 0, "18446744073709551616"},
rshTest{"18446744073709551616", 1, "9223372036854775808"},
rshTest{"18446744073709551616", 2, "4611686018427387904"},
rshTest{"18446744073709551616", 64, "1"},
rshTest{"340282366920938463463374607431768211456", 64, "18446744073709551616"},
rshTest{"340282366920938463463374607431768211456", 128, "1"},
}
func TestRsh(t *testing.T) {
for i, test := range rshTests {
in, _ := new(Int).SetString(test.in, 10);
expected, _ := new(Int).SetString(test.out, 10);
out := new(Int).Rsh(in, test.shift);
if out.Cmp(expected) != 0 {
t.Errorf("#%d got %s want %s", i, out, expected)
}
}
}
......@@ -6,9 +6,7 @@
// These are the building blocks for the operations on signed integers
// and rationals.
// NOTE: PACKAGE UNDER CONSTRUCTION.
//
// The big package implements multi-precision arithmetic (big numbers).
// This package implements multi-precision arithmetic (big numbers).
// The following numeric types are supported:
//
// - Int signed integers
......@@ -17,8 +15,13 @@
// of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned.
//
// If possible, one should use big over bignum as the latter is headed for
// deprecation.
//
package big
import "rand"
// An unsigned integer x of the form
//
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
......@@ -257,12 +260,40 @@ func divNW(z, x []Word, y Word) (q []Word, r Word) {
}
func divNN(z, z2, u, v []Word) (q, r []Word) {
if len(v) == 0 {
panic("Divide by zero undefined")
}
if cmpNN(u, v) < 0 {
q = makeN(z, 0, false);
r = setN(z2, u);
return;
}
if len(v) == 1 {
var rprime Word;
q, rprime = divNW(z, u, v[0]);
if rprime > 0 {
r = makeN(z2, 1, false);
r[0] = rprime;
} else {
r = makeN(z2, 0, false)
}
return;
}
q, r = divLargeNN(z, z2, u, v);
return;
}
// q = (uIn-r)/v, with 0 <= r < y
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(v) >= 2
// len(uIn) >= 1 + len(vIn)
func divNN(z, z2, uIn, v []Word) (q, r []Word) {
// len(uIn) >= len(v)
func divLargeNN(z, z2, uIn, v []Word) (q, r []Word) {
n := len(v);
m := len(uIn) - len(v);
......@@ -274,7 +305,7 @@ func divNN(z, z2, uIn, v []Word) (q, r []Word) {
shift := leadingZeroBits(v[n-1]);
shiftLeft(v, v, shift);
shiftLeft(u, uIn, shift);
u[len(uIn)] = uIn[len(uIn)-1] >> (uint(_W) - uint(shift));
u[len(uIn)] = uIn[len(uIn)-1] >> (_W - uint(shift));
// D2.
for j := m; j >= 0; j-- {
......@@ -335,7 +366,7 @@ func log2(x Word) int {
func log2N(x []Word) int {
m := len(x);
if m > 0 {
return (m-1)*int(_W) + log2(x[m-1])
return (m-1)*_W + log2(x[m-1])
}
return -1;
}
......@@ -439,7 +470,7 @@ func leadingZeroBits(x Word) int {
c := 0;
if x < 1<<(_W/2) {
x <<= _W / 2;
c = int(_W / 2);
c = _W / 2;
}
for i := 0; x != 0; i++ {
......@@ -449,7 +480,47 @@ func leadingZeroBits(x Word) int {
x <<= 1;
}
return int(_W);
return _W;
}
const deBruijn32 = 0x077CB531
var deBruijn32Lookup = []byte{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}
const deBruijn64 = 0x03f79d71b4ca8b09
var deBruijn64Lookup = []byte{
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
// trailingZeroBits returns the number of consecutive zero bits on the right
// side of the given Word.
// See Knuth, volume 4, section 7.3.1
func trailingZeroBits(x Word) int {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multipling by a power of two is equivalent to
// left shifting, in this case by k bits. The de Bruijn constant is
// such that all six bit, consecutive substrings are distinct.
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
switch _W {
case 32:
return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
case 64:
return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
default:
panic("Unknown word size")
}
return 0;
}
......@@ -458,7 +529,7 @@ func shiftLeft(dst, src []Word, n int) {
return
}
ñ := uint(_W) - uint(n);
ñ := _W - uint(n);
for i := len(src) - 1; i >= 1; i-- {
dst[i] = src[i] << uint(n);
dst[i] |= src[i-1] >> ñ;
......@@ -472,7 +543,7 @@ func shiftRight(dst, src []Word, n int) {
return
}
ñ := uint(_W) - uint(n);
ñ := _W - uint(n);
for i := 0; i < len(src)-1; i++ {
dst[i] = src[i] >> uint(n);
dst[i] |= src[i+1] << ñ;
......@@ -483,3 +554,221 @@ func shiftRight(dst, src []Word, n int) {
// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 }
// modNW returns x % d.
func modNW(x []Word, d Word) (r Word) {
// TODO(agl): we don't actually need to store the q value.
q := makeN(nil, len(x), false);
return divWVW(&q[0], 0, &x[0], d, len(x));
}
// powersOfTwoDecompose finds q and k such that q * 1<<k = n and q is odd.
func powersOfTwoDecompose(n []Word) (q []Word, k Word) {
if len(n) == 0 {
return n, 0
}
zeroWords := 0;
for n[zeroWords] == 0 {
zeroWords++
}
// One of the words must be non-zero by invariant, therefore
// zeroWords < len(n).
x := trailingZeroBits(n[zeroWords]);
q = makeN(nil, len(n)-zeroWords, false);
shiftRight(q, n[zeroWords:len(n)], x);
k = Word(_W*zeroWords + x);
return;
}
// randomN creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func randomN(z []Word, rand *rand.Rand, limit []Word, n int) []Word {
bitLengthOfMSW := uint(n % _W);
mask := Word((1 << bitLengthOfMSW) - 1);
z = makeN(z, len(limit), false);
for {
for i := range z {
switch _W {
case 32:
z[i] = Word(rand.Uint32())
case 64:
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
}
}
z[len(limit)-1] &= mask;
if cmpNN(z, limit) < 0 {
break
}
}
return z;
}
// If m != nil, expNNN calculates x**y mod m. Otherwise it calculates x**y. It
// reuses the storage of z if possible.
func expNNN(z, x, y, m []Word) []Word {
if len(y) == 0 {
z = makeN(z, 1, false);
z[0] = 1;
return z;
}
if m != nil {
// We likely end up being as long as the modulus.
z = makeN(z, len(m), false)
}
z = setN(z, x);
v := y[len(y)-1];
// It's invalid for the most significant word to be zero, therefore we
// will find a one bit.
shift := leadingZeros(v) + 1;
v <<= shift;
var q []Word;
const mask = 1 << (_W - 1);
// We walk through the bits of the exponent one by one. Each time we
// see a bit, we square, thus doubling the power. If the bit is a one,
// we also multiply by x, thus adding one to the power.
w := _W - int(shift);
for j := 0; j < w; j++ {
z = mulNN(z, z, z);
if v&mask != 0 {
z = mulNN(z, z, x)
}
if m != nil {
q, z = divNN(q, z, z, m)
}
v <<= 1;
}
for i := len(y) - 2; i >= 0; i-- {
v = y[i];
for j := 0; j < _W; j++ {
z = mulNN(z, z, z);
if v&mask != 0 {
z = mulNN(z, z, x)
}
if m != nil {
q, z = divNN(q, z, z, m)
}
v <<= 1;
}
}
return z;
}
// lenN returns the bit length of z.
func lenN(z []Word) int {
if len(z) == 0 {
return 0
}
return (len(z)-1)*_W + (_W - leadingZeroBits(z[len(z)-1]));
}
const (
primesProduct32 = 0xC0CFD797; // Π {p ∈ primes, 2 < p <= 29}
primesProduct64 = 0xE221F97C30E94E1D; // Π {p ∈ primes, 2 < p <= 53}
)
var bigOne = []Word{1}
var bigTwo = []Word{2}
// ProbablyPrime performs n Miller-Rabin tests to check whether n is prime.
// If it returns true, n is prime with probability 1 - 1/4^n.
// If it returns false, n is not prime.
func probablyPrime(n []Word, reps int) bool {
if len(n) == 0 {
return false
}
if len(n) == 1 {
if n[0]%2 == 0 {
return n[0] == 2
}
// We have to exclude these cases because we reject all
// multiples of these numbers below.
if n[0] == 3 || n[0] == 5 || n[0] == 7 || n[0] == 11 ||
n[0] == 13 || n[0] == 17 || n[0] == 19 || n[0] == 23 ||
n[0] == 29 || n[0] == 31 || n[0] == 37 || n[0] == 41 ||
n[0] == 43 || n[0] == 47 || n[0] == 53 {
return true
}
}
var r Word;
switch _W {
case 32:
r = modNW(n, primesProduct32)
case 64:
r = modNW(n, primesProduct64&_M)
default:
panic("Unknown word size")
}
if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||
r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {
return false
}
if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||
r%43 == 0 || r%47 == 0 || r%53 == 0) {
return false
}
nm1 := subNN(nil, n, bigOne);
// 1<<k * q = nm1;
q, k := powersOfTwoDecompose(nm1);
nm3 := subNN(nil, nm1, bigTwo);
rand := rand.New(rand.NewSource(int64(n[0])));
var x, y, quotient []Word;
nm3Len := lenN(nm3);
NextRandom:
for i := 0; i < reps; i++ {
x = randomN(x, rand, nm3, nm3Len);
addNN(x, x, bigTwo);
y = expNNN(y, x, q, n);
if cmpNN(y, bigOne) == 0 || cmpNN(y, nm1) == 0 {
continue
}
for j := Word(1); j < k; j++ {
y = mulNN(y, y, y);
quotient, y = divNN(quotient, y, y, n);
if cmpNN(y, nm1) == 0 {
continue NextRandom
}
if cmpNN(y, bigOne) == 0 {
return false
}
}
return false;
}
return true;
}
......@@ -120,7 +120,7 @@ func TestStringN(t *testing.T) {
func TestLeadingZeroBits(t *testing.T) {
var x Word = 1 << (_W - 1);
for i := 0; i <= int(_W); i++ {
for i := 0; i <= _W; i++ {
if leadingZeroBits(x) != i {
t.Errorf("failed at %x: got %d want %d", x, leadingZeroBits(x), i)
}
......@@ -185,3 +185,97 @@ func TestShiftRight(t *testing.T) {
}
}
}
type modNWTest struct {
in string;
dividend string;
out string;
}
var modNWTests32 = []modNWTest{
modNWTest{"23492635982634928349238759823742", "252341", "220170"},
}
var modNWTests64 = []modNWTest{
modNWTest{"6527895462947293856291561095690465243862946", "524326975699234", "375066989628668"},
}
func runModNWTests(t *testing.T, tests []modNWTest) {
for i, test := range tests {
in, _ := new(Int).SetString(test.in, 10);
d, _ := new(Int).SetString(test.dividend, 10);
out, _ := new(Int).SetString(test.out, 10);
r := modNW(in.abs, d.abs[0]);
if r != out.abs[0] {
t.Errorf("#%d failed: got %s want %s\n", i, r, out)
}
}
}
func TestModNW(t *testing.T) {
if _W >= 32 {
runModNWTests(t, modNWTests32)
}
if _W >= 64 {
runModNWTests(t, modNWTests32)
}
}
func TestTrailingZeroBits(t *testing.T) {
var x Word;
x--;
for i := 0; i < _W; i++ {
if trailingZeroBits(x) != i {
t.Errorf("Failed at step %d: x: %x got: %d\n", i, x, trailingZeroBits(x))
}
x <<= 1;
}
}
type expNNNTest struct {
x, y, m string;
out string;
}
var expNNNTests = []expNNNTest{
expNNNTest{"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"},
expNNNTest{"0x8000000000000000", "2", "6719", "4944"},
expNNNTest{"0x8000000000000000", "3", "6719", "5447"},
expNNNTest{"0x8000000000000000", "1000", "6719", "1603"},
expNNNTest{"0x8000000000000000", "1000000", "6719", "3199"},
expNNNTest{
"2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347",
"298472983472983471903246121093472394872319615612417471234712061",
"29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464",
"23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291",
},
}
func TestExpNNN(t *testing.T) {
for i, test := range expNNNTests {
x, _, _ := scanN(nil, test.x, 0);
y, _, _ := scanN(nil, test.y, 0);
out, _, _ := scanN(nil, test.out, 0);
var m []Word;
if len(test.m) > 0 {
m, _, _ = scanN(nil, test.m, 0)
}
z := expNNN(nil, x, y, m);
if cmpNN(z, out) != 0 {
t.Errorf("#%d got %v want %v", i, z, out)
}
}
}
......@@ -9,6 +9,10 @@
// - Integer signed integers
// - Rational rational numbers
//
// This package has been designed for ease of use but the functions it provides
// are likely to be quite slow. It may be deprecated eventually. Use package
// big instead, if possible.
//
package bignum
import (
......
......@@ -19,15 +19,11 @@ import (
var bigZero = big.NewInt(0)
var bigOne = big.NewInt(1)
/*
TODO(agl): Enable once big implements ProbablyPrime.
// randomSafePrime returns a number, p, of the given size, such that p and
// (p-1)/2 are both prime with high probability.
func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
if bits < 1 {
err = os.EINVAL;
err = os.EINVAL
}
bytes := make([]byte, (bits+7)/8);
......@@ -37,7 +33,7 @@ func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
for {
_, err = io.ReadFull(rand, bytes);
if err != nil {
return;
return
}
// Don't let the value be too small.
......@@ -46,10 +42,10 @@ func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
bytes[len(bytes)-1] |= 1;
p.SetBytes(bytes);
if p.ProbablyPrime(20) {
if big.ProbablyPrime(p, 20) {
p2.Rsh(p, 1); // p2 = (p - 1)/2
if p2.ProbablyPrime(20) {
return;
if big.ProbablyPrime(p2, 20) {
return
}
}
}
......@@ -57,8 +53,6 @@ func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
return;
}
*/
// randomNumber returns a uniform random value in [0, max).
func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
k := (max.Len() + 7) / 8;
......@@ -84,7 +78,7 @@ func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
bytes[0] &= uint8(int(1<<r) - 1);
n.SetBytes(bytes);
if big.CmpInt(n, max) < 0 {
if n.Cmp(max) < 0 {
return
}
}
......@@ -109,20 +103,20 @@ type PrivateKey struct {
// It returns nil if the key is valid, or else an os.Error describing a problem.
func (priv PrivateKey) Validate() os.Error {
/*
TODO(agl): Enable once big implements ProbablyPrime.
// Check that p and q are prime. Note that this is just a sanity
// check. Since the random witnesses chosen by ProbablyPrime are
// deterministic, given the candidate number, it's easy for an attack
// to generate composites that pass this test.
if !big.ProbablyPrime(priv.P, 20) {
return os.ErrorString("P is composite")
}
if !big.ProbablyPrime(priv.Q, 20) {
return os.ErrorString("Q is composite")
}
// Check that p and q are prime.
if !priv.P.ProbablyPrime(20) {
return os.ErrorString("P is composite");
}
if !priv.Q.ProbablyPrime(20) {
return os.ErrorString("Q is composite");
}
*/
// Check that p*q == n.
modulus := new(big.Int).Mul(priv.P, priv.Q);
if big.CmpInt(modulus, priv.N) != 0 {
if modulus.Cmp(priv.N) != 0 {
return os.ErrorString("invalid modulus")
}
// Check that e and totient(p, q) are coprime.
......@@ -134,20 +128,18 @@ func (priv PrivateKey) Validate() os.Error {
x := new(big.Int);
y := new(big.Int);
big.GcdInt(gcd, x, y, totient, e);
if big.CmpInt(gcd, bigOne) != 0 {
if gcd.Cmp(bigOne) != 0 {
return os.ErrorString("invalid public exponent E")
}
// Check that de ≡ 1 (mod totient(p, q))
de := new(big.Int).Mul(priv.D, e);
de.Mod(de, totient);
if big.CmpInt(de, bigOne) != 0 {
if de.Cmp(bigOne) != 0 {
return os.ErrorString("invalid private exponent D")
}
return nil;
}
/*
// GenerateKeyPair generates an RSA keypair of the given bit size.
func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
priv = new(PrivateKey);
......@@ -168,16 +160,16 @@ func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
for {
p, err := randomSafePrime(rand, bits/2);
if err != nil {
return;
return
}
q, err := randomSafePrime(rand, bits/2);
if err != nil {
return;
return
}
if big.CmpInt(p, q) == 0 {
continue;
if p.Cmp(q) == 0 {
continue
}
n := new(big.Int).Mul(p, q);
......@@ -191,7 +183,7 @@ func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
e := big.NewInt(int64(priv.E));
big.GcdInt(g, priv.D, y, e, totient);
if big.CmpInt(g, bigOne) == 0 {
if g.Cmp(bigOne) == 0 {
priv.D.Add(priv.D, totient);
priv.P = p;
priv.Q = q;
......@@ -204,8 +196,6 @@ func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
return;
}
*/
// incCounter increments a four byte, big-endian counter.
func incCounter(c *[4]byte) {
if c[3]++; c[3] != 0 {
......@@ -305,7 +295,7 @@ func modInverse(a, n *big.Int) (ia *big.Int) {
x := new(big.Int);
y := new(big.Int);
big.GcdInt(g, x, y, a, n);
if big.CmpInt(x, bigOne) < 0 {
if x.Cmp(bigOne) < 0 {
// 0 is not the multiplicative inverse of any element so, if x
// < 1, then x is negative.
x.Add(x, n)
......@@ -318,7 +308,7 @@ func modInverse(a, n *big.Int) (ia *big.Int) {
// random source is given, RSA blinding is used.
func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
// TODO(agl): can we get away with reusing blinds?
if big.CmpInt(c, priv.N) > 0 {
if c.Cmp(priv.N) > 0 {
err = DecryptionError{};
return;
}
......@@ -335,7 +325,7 @@ func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.E
err = err1;
return;
}
if big.CmpInt(r, bigZero) == 0 {
if r.Cmp(bigZero) == 0 {
r = bigOne
}
ir = modInverse(r, priv.N);
......
......@@ -12,42 +12,36 @@ import (
"testing";
)
/*
TODO(agl): Enable once big implements ProbablyPrime.
func TestKeyGeneration(t *testing.T) {
urandom, err := os.Open("/dev/urandom", os.O_RDONLY, 0);
if err != nil {
t.Errorf("failed to open /dev/urandom");
t.Errorf("failed to open /dev/urandom")
}
priv, err := GenerateKey(urandom, 16);
if err != nil {
t.Errorf("failed to generate key");
t.Errorf("failed to generate key")
}
pub := &priv.PublicKey;
m := big.NewInt(42);
c := encrypt(new(big.Int), pub, m);
m2, err := decrypt(nil, priv, c);
if err != nil {
t.Errorf("error while decrypting: %s", err);
t.Errorf("error while decrypting: %s", err)
}
if big.CmpInt(m, m2) != 0 {
t.Errorf("got:%v, want:%v (%s)", m2, m, priv);
if m.Cmp(m2) != 0 {
t.Errorf("got:%v, want:%v (%s)", m2, m, priv)
}
m3, err := decrypt(urandom, priv, c);
if err != nil {
t.Errorf("error while decrypting (blind): %s", err);
t.Errorf("error while decrypting (blind): %s", err)
}
if big.CmpInt(m, m3) != 0 {
t.Errorf("(blind) got:%v, want:%v", m3, m);
if m.Cmp(m3) != 0 {
t.Errorf("(blind) got:%v, want:%v", m3, m)
}
}
*/
type testEncryptOAEPMessage struct {
in []byte;
seed []byte;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment