Commit 22690e66 authored by Adam Langley's avatar Adam Langley

crypto/rsa: only enforce that de ≡ 1 mod |(ℤ/nℤ)*| in order to load private keys…

crypto/rsa: only enforce that de ≡ 1 mod |(ℤ/nℤ)*| in order to load private keys generated by GnuTLS.

Previously we checked that de ≡ 1 mod φ(n). Since φ(n) is a multiple
of |(ℤ/nℤ)*|, this encompassed the new check, but it was too strict as
keys generated by GnuTLS would be rejected when gcd(p-1,q-1)≠1.

(Also updated the error strings in crypto/rsa to contain the package name, which some were missing.)

R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5867043
parent 34ace104
......@@ -232,11 +232,11 @@ func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte)
func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
hashLen = hash.Size()
if inLen != hashLen {
return 0, nil, errors.New("input must be hashed message")
return 0, nil, errors.New("crypto/rsa: input must be hashed message")
}
prefix, ok := hashPrefixes[hash]
if !ok {
return 0, nil, errors.New("unsupported hash function")
return 0, nil, errors.New("crypto/rsa: unsupported hash function")
}
return
}
......@@ -63,7 +63,7 @@ func (priv *PrivateKey) Validate() error {
// easy for an attack to generate composites that pass this test.
for _, prime := range priv.Primes {
if !prime.ProbablyPrime(20) {
return errors.New("prime factor is composite")
return errors.New("crypto/rsa: prime factor is composite")
}
}
......@@ -73,13 +73,20 @@ func (priv *PrivateKey) Validate() error {
modulus.Mul(modulus, prime)
}
if modulus.Cmp(priv.N) != 0 {
return errors.New("invalid modulus")
return errors.New("crypto/rsa: invalid modulus")
}
// Check that e and totient(Πprimes) are coprime.
totient := new(big.Int).Set(bigOne)
var gcdTotients *big.Int
for _, prime := range priv.Primes {
pminus1 := new(big.Int).Sub(prime, bigOne)
totient.Mul(totient, pminus1)
if gcdTotients == nil {
gcdTotients = pminus1
} else {
gcdTotients.GCD(nil, nil, gcdTotients, pminus1)
}
}
e := big.NewInt(int64(priv.E))
gcd := new(big.Int)
......@@ -87,13 +94,14 @@ func (priv *PrivateKey) Validate() error {
y := new(big.Int)
gcd.GCD(x, y, totient, e)
if gcd.Cmp(bigOne) != 0 {
return errors.New("invalid public exponent E")
return errors.New("crypto/rsa: invalid public exponent E")
}
// Check that de ≡ 1 (mod totient(Πprimes))
// Check that de ≡ 1 mod |ℤ/nℤ| where |ℤ/nℤ| = totient/gcdTotients
de := new(big.Int).Mul(priv.D, e)
de.Mod(de, totient)
order := new(big.Int).Div(totient, gcdTotients)
de.Mod(de, order)
if de.Cmp(bigOne) != 0 {
return errors.New("invalid private exponent D")
return errors.New("crypto/rsa: invalid private exponent D")
}
return nil
}
......@@ -118,7 +126,7 @@ func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *Priva
priv.E = 65537
if nprimes < 2 {
return nil, errors.New("rsa.GenerateMultiPrimeKey: nprimes must be >= 2")
return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
}
primes := make([]*big.Int, nprimes)
......
......@@ -50,6 +50,24 @@ func Test4PrimeKeyGeneration(t *testing.T) {
testKeyBasics(t, priv)
}
func TestGnuTLSKey(t *testing.T) {
// This is a key generated by `certtool --generate-privkey --bits 128`.
// It's such that de ≢ 1 mod φ(n), but is congruent mod the order of
// the group.
priv := &PrivateKey{
PublicKey: PublicKey{
N: fromBase10("290684273230919398108010081414538931343"),
E: 65537,
},
D: fromBase10("31877380284581499213530787347443987241"),
Primes: []*big.Int{
fromBase10("16775196964030542637"),
fromBase10("17328218193455850539"),
},
}
testKeyBasics(t, priv)
}
func testKeyBasics(t *testing.T, priv *PrivateKey) {
if err := priv.Validate(); err != nil {
t.Errorf("Validate() failed: %s", err)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment