Commit 276ffd29 authored by Robert Griesemer's avatar Robert Griesemer

- added shl operation, extra tests

- fixed code so it works with any base between 9 and 64
- work-around for 6g shift problems in various places

R=r
OCL=18080
CL=18080
parent d0abe4cb
......@@ -10,20 +10,36 @@ package Bignum
// - Natural unsigned integer numbers
// - Integer signed integer numbers
// - Rational rational numbers
// - Number scaled rational numbers (contain exponent)
// ----------------------------------------------------------------------------
// Representation
//
// A natural number of the form
//
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
//
// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n,
// with the digits x[i] as the array elements. 0 is represented as an
// empty array (length == 0).
//
// A natural number is normalized if the array contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur which are
// always normalized before returning the final result.
//
// The base B is chosen as large as possible on a given platform but there
// are a few constraints besides the largest unsigned integer type available.
// TODO describe the constraints.
type Word uint64
const LogW = 32;
type Word uint64;
const LogW = 64;
const LogH = 4; // bits for a hex digit (= "small" number)
const H = 1 << LogH;
const L = LogW - LogH; // must be even (for Mul1)
const B = 1 << L;
const LogB = LogW - LogH;
const L = LogB;
const B = 1 << LogB;
const M = B - 1;
......@@ -53,18 +69,13 @@ func assert(p bool) {
}
func init() {
assert(L % 2 == 0); // L must be even
}
func IsSmall(x Word) bool {
return x < H;
}
func Update(x Word) (Word, Word) {
return x & M, x >> L;
func Split(x Word) (Word, Word) {
return x>>L, x&M;
}
......@@ -95,27 +106,27 @@ export func NewNat(x Word) *Natural {
return z;
default:
z = new(Natural, 2);
z[0], z[1] = Update(x);
z[1], z[0] = Split(x);
}
return z;
}
func Normalize(x *Natural) *Natural {
i := len(x);
for i > 0 && x[i - 1] == 0 { i-- }
if i < len(x) {
x = x[0 : i]; // trim leading 0's
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
func Normalize3(x *Natural3) *Natural3 {
i := len(x);
for i > 0 && x[i - 1] == 0 { i-- }
if i < len(x) {
x = x[0 : i]; // trim leading 0's
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
......@@ -137,8 +148,8 @@ func (x *Natural) Add(y *Natural) *Natural {
i := 0;
c := Word(0);
for i < m { z[i], c = Update(x[i] + y[i] + c); i++; }
for i < n { z[i], c = Update(x[i] + c); i++; }
for ; i < m; i++ { c, z[i] = Split(x[i] + y[i] + c); }
for ; i < n; i++ { c, z[i] = Split(x[i] + c); }
z[i] = c;
return Normalize(z);
......@@ -153,8 +164,8 @@ func (x *Natural) Sub(y *Natural) *Natural {
i := 0;
c := Word(0);
for i < m { z[i], c = Update(x[i] - y[i] + c); i++; }
for i < n { z[i], c = Update(x[i] + c); i++; }
for ; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); }
for ; i < n; i++ { c, z[i] = Split(x[i] + c); }
assert(c == 0); // x.Sub(y) must be called with x >= y
return Normalize(z);
......@@ -170,64 +181,61 @@ func (x* Natural) MulAdd1(a, c Word) *Natural {
n := len(x);
z := new(Natural, n + 1);
for i := 0; i < n; i++ { z[i], c = Update(x[i] * a + c); }
for i := 0; i < n; i++ { c, z[i] = Split(x[i]*a + c); }
z[n] = c;
return Normalize(z);
}
// Returns z = (x * y) div B, c = (x * y) mod B.
// Returns c = x*y div B, z = x*y mod B.
func Mul1(x, y Word) (Word, Word) {
const L2 = (L + 1) / 2; // TODO check if we can run with odd L
const B2 = 1 << L2;
const M2 = B2 - 1;
// Split x and y into 2 sub-digits each (in base sqrt(B)),
// multiply the digits separately while avoiding overflow,
// and return the product as two separate digits.
const L0 = (L + 1)/2;
const L1 = L - L0;
const DL = L0 - L1; // 0 or 1
const b = 1<<L0;
const m = b - 1;
// split x and y into sub-digits
// x = (x1*b + x0)
// y = (y1*b + y0)
x1, x0 := x>>L0, x&m;
y1, y0 := y>>L0, y&m;
// x*y = t2*b^2 + t1*b + t0
t0 := x0*y0;
t1 := x1*y0 + x0*y1;
t2 := x1*y1;
// compute the result digits but avoid overflow
// z = z1*B + z0 = x*y
z0 := (t1<<L0 + t0)&M;
z1 := t2<<DL + (t1 + t0>>L0)>>L1;
x0 := x & M2;
x1 := x >> L2;
y0 := y & M2;
y1 := y >> L2;
z0 := x0*y0;
z1 := x1*y0 + x0*y1 + z0 >> L2; z0 &= M2;
z2 := x1*y1 + z1 >> L2; z1 &= M2;
return z1 << L2 | z0, z2;
return z1, z0;
}
func (x *Natural) Mul(y *Natural) *Natural {
if x.IsZero() || y.IsZero() {
return NatZero;
}
xl := len(x);
yl := len(y);
if xl < yl {
return y.Mul(x); // for speed
}
assert(xl >= yl && yl > 0);
// initialize z
zl := xl + yl;
z := new(Natural, zl);
n := len(x);
m := len(y);
z := new(Natural, n + m);
for j := 0; j < yl; j++ {
for j := 0; j < m; j++ {
d := y[j];
if d != 0 {
k := j;
c := Word(0);
for i := 0; i < xl; i++ {
// compute z[k] += x[i] * d + c;
t := z[k] + c;
var z1 Word;
z1, c = Mul1(x[i], d);
t += z1;
z[k] = t & M;
c += t >> L;
k++;
for i := 0; i < n; i++ {
// z[i+j] += x[i]*d + c;
z1, z0 := Mul1(x[i], d);
c, z[i+j] = Split(z[i+j] + z0 + c);
c += z1;
}
z[k] = c;
z[n+j] = c;
}
}
......@@ -235,33 +243,33 @@ func (x *Natural) Mul(y *Natural) *Natural {
}
func Shl1(x Word, s int) (Word, Word) {
return 0, 0
// BUG use these until 6g shifts are working properly
func shl(x Word, s uint) Word {
return x << s;
}
func Shr1(x Word, s int) (Word, Word) {
return 0, 0
func shr(x Word, s uint) Word {
return x >> s;
}
func (x *Natural) Shl(s int) *Natural {
panic("incomplete");
if s == 0 {
return x;
}
S := s/L;
s = s%L;
n := len(x) + S + 1;
z := new(Natural, n);
func Shl1(x, c Word, s uint) (Word, Word) {
assert(s <= LogB);
return shr(x, (LogB - s)), shl(x, s)&M | c
}
func (x *Natural) Shl(s uint) *Natural {
n := len(x);
si := int(s/LogB);
s = s%LogB;
z := new(Natural, n + si + 1);
i := 0;
c := Word(0);
for i := 0; i < n; i++ {
z[i + S], c = Shl1(x[i], s);
}
z[n + S] = c;
for ; i < n; i++ { c, z[i+si] = Shl1(x[i], c, s); }
z[i+si] = c;
return Normalize(z);
}
......@@ -269,10 +277,6 @@ func (x *Natural) Shl(s int) *Natural {
func (x *Natural) Shr(s uint) *Natural {
panic("incomplete");
if s == 0 {
return x;
}
return nil
}
......@@ -359,15 +363,21 @@ func (x *Natural) Cmp(y *Natural) int {
}
func Log1(x Word) int {
n := -1;
for x != 0 { x >>= 1; n++; }
return n;
}
func (x *Natural) Log() int {
n := len(x);
if n == 0 { return 0; }
assert(n > 0);
c := (n - 1) * L;
for t := x[n - 1]; t != 0; t >>= 1 { c++ };
return c;
if n > 0 {
n = (n - 1)*L + Log1(x[n - 1]);
} else {
n = -1;
}
return n;
}
......@@ -381,8 +391,8 @@ func (x *Natural) And(y *Natural) *Natural {
z := new(Natural, n);
i := 0;
for i < m { z[i] = x[i] & y[i]; i++; }
for i < n { z[i] = x[i]; i++; }
for ; i < m; i++ { z[i] = x[i] & y[i]; }
for ; i < n; i++ { z[i] = x[i]; }
return Normalize(z);
}
......@@ -398,8 +408,8 @@ func (x *Natural) Or(y *Natural) *Natural {
z := new(Natural, n);
i := 0;
for i < m { z[i] = x[i] | y[i]; i++; }
for i < n { z[i] = x[i]; i++; }
for ; i < m; i++ { z[i] = x[i] | y[i]; }
for ; i < n; i++ { z[i] = x[i]; }
return Normalize(z);
}
......@@ -415,8 +425,8 @@ func (x *Natural) Xor(y *Natural) *Natural {
z := new(Natural, n);
i := 0;
for i < m { z[i] = x[i] ^ y[i]; i++; }
for i < n { z[i] = x[i]; i++; }
for ; i < m; i++ { z[i] = x[i] ^ y[i]; }
for ; i < n; i++ { z[i] = x[i]; }
return Normalize(z);
}
......@@ -437,9 +447,8 @@ func (x *Natural) DivMod1(d Word) (*Natural, Word) {
c := Word(0);
for i := len(x) - 1; i >= 0; i-- {
var LL Word = L; // BUG shift broken for const L
c = c << LL + x[i];
x[i] = c / d;
c = c<<L + x[i];
x[i] = c/d;
c %= d;
}
......@@ -456,7 +465,7 @@ func (x *Natural) String(base Word) string {
// TODO n is too small for bases < 10!!!
assert(base >= 10); // for now
// approx. length: 1 char for 3 bits
n := x.Log()/3 + 1; // +1 (round up)
n := x.Log()/3 + 10; // +10 (round up) - what is the right number?
s := new([]byte, n);
// convert
......@@ -480,7 +489,7 @@ func MulRange(a, b Word) *Natural {
case a == b: return NewNat(a);
case a + 1 == b: return NewNat(a).Mul(NewNat(b));
}
m := (a + b) >> 1;
m := (a + b)>>1;
assert(a <= m && m < b);
return MulRange(a, m).Mul(MulRange(m + 1, b));
}
......@@ -671,12 +680,3 @@ export func RatFromString(s string) *Rational {
panic("UNIMPLEMENTED");
return nil;
}
// ----------------------------------------------------------------------------
// Scaled numbers
export type Number struct {
mant *Rational;
exp Integer;
}
......@@ -20,24 +20,44 @@ var (
)
func TEST(msg string, b bool) {
var test_msg string;
func TEST(n int, b bool) {
if !b {
panic("TEST failed: ", msg, "\n");
panic("TEST failed: ", test_msg, "(", n, ")\n");
}
}
func TestConv() {
TEST("TC1", a.Cmp(Bignum.NewNat(991)) == 0);
TEST("TC2", b.Cmp(Bignum.Fact(20)) == 0);
TEST("TC3", c.Cmp(Bignum.Fact(100)) == 0);
TEST("TC4", a.String(10) == sa);
TEST("TC5", b.String(10) == sb);
TEST("TC6", c.String(10) == sc);
test_msg = "TestConv";
TEST(0, a.Cmp(Bignum.NewNat(991)) == 0);
TEST(1, b.Cmp(Bignum.Fact(20)) == 0);
TEST(2, c.Cmp(Bignum.Fact(100)) == 0);
TEST(3, a.String(10) == sa);
TEST(4, b.String(10) == sb);
TEST(5, c.String(10) == sc);
}
func TestShift() {
test_msg = "TestShiftA";
TEST(0, b.Shl(0).Cmp(b) == 0);
TEST(1, c.Shl(1).Cmp(c) > 0);
test_msg = "TestShiftB";
{ const m = 3;
p := b;
f := Bignum.NewNat(1<<m);
for i := 0; i < 100; i++ {
TEST(i, b.Shl(uint(i*m)).Cmp(p) == 0);
p = p.Mul(f);
}
}
}
func main() {
TestConv();
TestShift();
print("PASSED\n");
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment