Commit 45ffeab5 authored by Austin Clements's avatar Austin Clements

runtime: eliminate most uses of mheap_.arena_*

This replaces all uses of the mheap_.arena_* fields outside of
mallocinit and sysAlloc. These fields fundamentally assume a
contiguous heap between two bounds, so eliminating these is necessary
for a sparse heap.

Many of these are replaced with checks for non-nil spans at the test
address (which in turn checks for a non-nil entry in the heap arena
array). Some of them are just for debugging and somewhat meaningless
with a sparse heap, so those we just delete.

Updates #10460.

Change-Id: I8345b95ffc610aed694f08f74633b3c63506a41f
Reviewed-on: https://go-review.googlesource.com/85886
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: 's avatarRick Hudson <rlh@golang.org>
parent d6e82185
......@@ -572,17 +572,7 @@ func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
// pointer into Go memory. If it does, we panic.
// The return values are unused but useful to see in panic tracebacks.
func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
if !inheap(uintptr(p)) {
// On 32-bit systems it is possible for C's allocated memory
// to have addresses between arena_start and arena_used.
// Either this pointer is a stack or an unused span or it's
// a C allocation. Escape analysis should prevent the first,
// garbage collection should prevent the second,
// and the third is completely OK.
return
}
if inheap(uintptr(p)) {
b, span, _ := findObject(uintptr(p), 0, 0)
base = b
if base == 0 {
......
......@@ -488,8 +488,17 @@ func dumpparams() {
dumpbool(true) // big-endian ptrs
}
dumpint(sys.PtrSize)
dumpint(uint64(mheap_.arena_start))
dumpint(uint64(mheap_.arena_used))
var arenaStart, arenaEnd uintptr
for i, ha := range mheap_.arenas {
if ha != nil {
if arenaStart == 0 {
arenaStart = uintptr(i) * heapArenaBytes
}
arenaEnd = uintptr(i+1) * heapArenaBytes
}
}
dumpint(uint64(arenaStart))
dumpint(uint64(arenaEnd))
dumpstr(sys.GOARCH)
dumpstr(sys.Goexperiment)
dumpint(uint64(ncpu))
......
......@@ -862,7 +862,7 @@ func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
throw("out of memory")
}
s.limit = s.base() + size
heapBitsForSpan(s.base()).initSpan(s)
heapBitsForAddr(s.base()).initSpan(s)
return s
}
......
......@@ -308,9 +308,6 @@ func (m markBits) clearMarked() {
// markBitsForSpan returns the markBits for the span base address base.
func markBitsForSpan(base uintptr) (mbits markBits) {
if base < mheap_.arena_start || base >= mheap_.arena_used {
throw("markBitsForSpan: base out of range")
}
mbits = markBitsForAddr(base)
if mbits.mask != 1 {
throw("markBitsForSpan: unaligned start")
......@@ -352,15 +349,6 @@ func heapBitsForAddr(addr uintptr) heapBits {
return heapBits{bitp, uint32(off & 3), uint32(arena), last}
}
// heapBitsForSpan returns the heapBits for the span base address base.
func heapBitsForSpan(base uintptr) (hbits heapBits) {
if base < mheap_.arena_start || base >= mheap_.arena_used {
print("runtime: base ", hex(base), " not in range [", hex(mheap_.arena_start), ",", hex(mheap_.arena_used), ")\n")
throw("heapBitsForSpan: base out of range")
}
return heapBitsForAddr(base)
}
// findObject returns the base address for the heap object containing
// the address p, the object's span, and the index of the object in s.
// If p does not point into a heap object, it returns base == 0.
......
......@@ -237,6 +237,6 @@ func (c *mcentral) grow() *mspan {
p := s.base()
s.limit = p + size*n
heapBitsForSpan(s.base()).initSpan(s)
heapBitsForAddr(s.base()).initSpan(s)
return s
}
......@@ -1085,9 +1085,6 @@ func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
b := b0
n := n0
arena_start := mheap_.arena_start
arena_used := mheap_.arena_used
for i := uintptr(0); i < n; {
// Find bits for the next word.
bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8)))
......@@ -1099,7 +1096,7 @@ func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
if bits&1 != 0 {
// Same work as in scanobject; see comments there.
obj := *(*uintptr)(unsafe.Pointer(b + i))
if obj != 0 && arena_start <= obj && obj < arena_used {
if obj != 0 {
if obj, span, objIndex := findObject(obj, b, i); obj != 0 {
greyobject(obj, b, i, span, gcw, objIndex)
}
......@@ -1118,18 +1115,6 @@ func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
//
//go:nowritebarrier
func scanobject(b uintptr, gcw *gcWork) {
// Note that arena_used may change concurrently during
// scanobject and hence scanobject may encounter a pointer to
// a newly allocated heap object that is *not* in
// [start,used). It will not mark this object; however, we
// know that it was just installed by a mutator, which means
// that mutator will execute a write barrier and take care of
// marking it. This is even more pronounced on relaxed memory
// architectures since we access arena_used without barriers
// or synchronization, but the same logic applies.
arena_start := mheap_.arena_start
arena_used := mheap_.arena_used
// Find the bits for b and the size of the object at b.
//
// b is either the beginning of an object, in which case this
......@@ -1203,9 +1188,17 @@ func scanobject(b uintptr, gcw *gcWork) {
obj := *(*uintptr)(unsafe.Pointer(b + i))
// At this point we have extracted the next potential pointer.
// Check if it points into heap and not back at the current object.
if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n {
// Mark the object.
// Quickly filter out nil and pointers back to the current object.
if obj != 0 && obj-b >= n {
// Test if obj points into the Go heap and, if so,
// mark the object.
//
// Note that it's possible for findObject to
// fail if obj points to a just-allocated heap
// object because of a race with growing the
// heap. In this case, we know the object was
// just allocated and hence will be marked by
// allocation itself.
if obj, span, objIndex := findObject(obj, b, i); obj != 0 {
greyobject(obj, b, i, span, gcw, objIndex)
}
......@@ -1305,10 +1298,6 @@ func greyobject(obj, base, off uintptr, span *mspan, gcw *gcWork, objIndex uintp
// gcDumpObject dumps the contents of obj for debugging and marks the
// field at byte offset off in obj.
func gcDumpObject(label string, obj, off uintptr) {
if obj < mheap_.arena_start || obj >= mheap_.arena_used {
print(label, "=", hex(obj), " is not in the Go heap\n")
return
}
s := spanOf(obj)
print(label, "=", hex(obj))
if s == nil {
......@@ -1421,7 +1410,7 @@ func initCheckmarks() {
useCheckmark = true
for _, s := range mheap_.allspans {
if s.state == _MSpanInUse {
heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout())
heapBitsForAddr(s.base()).initCheckmarkSpan(s.layout())
}
}
}
......@@ -1430,7 +1419,7 @@ func clearCheckmarks() {
useCheckmark = false
for _, s := range mheap_.allspans {
if s.state == _MSpanInUse {
heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout())
heapBitsForAddr(s.base()).clearCheckmarkSpan(s.layout())
}
}
}
......@@ -232,9 +232,8 @@ func wbBufFlush1(_p_ *p) {
// un-shaded stacks and flush after each stack scan.
gcw := &_p_.gcw
pos := 0
arenaStart := mheap_.arena_start
for _, ptr := range ptrs {
if ptr < arenaStart {
if ptr < minLegalPointer {
// nil pointers are very common, especially
// for the "old" values. Filter out these and
// other "obvious" non-heap pointers ASAP.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment