Commit 5b5a674b authored by Rob Pike's avatar Rob Pike

gob: better debugging, commentary

Re-implement the debugging helper to be independent of the existing
implementation.  This is preparatory to a rewrite to clean up issue 1416.
Include a definition of the grammar of the data stream.

R=rsc
CC=golang-dev
https://golang.org/cl/3970045
parent 5cf12082
......@@ -1307,6 +1307,31 @@ func TestUnexportedFields(t *testing.T) {
}
}
var singletons = []interface{}{
true,
7,
3.2,
"hello",
[3]int{11, 22, 33},
[]float32{0.5, 0.25, 0.125},
map[string]int{"one": 1, "two": 2},
}
func TestDebugSingleton(t *testing.T) {
if debugFunc == nil {
return
}
b := new(bytes.Buffer)
// Accumulate a number of values and print them out all at once.
for _, x := range singletons {
err := NewEncoder(b).Encode(x)
if err != nil {
t.Fatal("encode:", err)
}
}
debugFunc(b)
}
// A type that won't be defined in the gob until we send it in an interface value.
type OnTheFly struct {
A int
......@@ -1325,7 +1350,7 @@ type DT struct {
S []string
}
func TestDebug(t *testing.T) {
func TestDebugStruct(t *testing.T) {
if debugFunc == nil {
return
}
......
......@@ -2,309 +2,683 @@ package gob
// This file is not normally included in the gob package. Used only for debugging the package itself.
// Add debug.go to the files listed in the Makefile to add Debug to the gob package.
// Except for reading uints, it is an implementation of a reader that is independent of
// the one implemented by Decoder.
import (
"bytes"
"fmt"
"io"
"os"
"reflect"
"runtime"
"strings"
"sync"
)
var dump = false // If true, print the remaining bytes in the input buffer at each item.
var dumpBytes = false // If true, print the remaining bytes in the input buffer at each item.
// Init installs the debugging facility. If this file is not compiled in the
// package, the test in codec_test.go is a no-op.
// package, the tests in codec_test.go are no-ops.
func init() {
debugFunc = Debug
}
// Debug prints a human-readable representation of the gob data read from r.
func Debug(r io.Reader) {
defer func() {
if e := recover(); e != nil {
if _, ok := e.(runtime.Error); ok {
panic(e)
}
fmt.Printf("error during debugging: %v\n", e)
var (
blanks = bytes.Repeat([]byte{' '}, 3*10)
empty = []byte(": <empty>\n")
tabs = strings.Repeat("\t", 100)
)
// tab indents itself when printed.
type tab int
func (t tab) String() string {
n := int(t)
if n > len(tabs) {
n = len(tabs)
}
return tabs[0:n]
}
func (t tab) print() {
fmt.Fprint(os.Stderr, t)
}
// A peekReader wraps an io.Reader, allowing one to peek ahead to see
// what's coming without stealing the data from the client of the Reader.
type peekReader struct {
r io.Reader
data []byte // read-ahead data
}
// newPeekReader returns a peekReader that wraps r.
func newPeekReader(r io.Reader) *peekReader {
return &peekReader{r: r}
}
// Read is the usual method. It will first take data that has been read ahead.
func (p *peekReader) Read(b []byte) (n int, err os.Error) {
if len(p.data) == 0 {
return p.r.Read(b)
}
// Satisfy what's possible from the read-ahead data.
n = copy(b, p.data)
// Move data down to beginning of slice, to avoid endless growth
copy(p.data, p.data[n:])
p.data = p.data[:len(p.data)-n]
return
}
// peek returns as many bytes as possible from the unread
// portion of the stream, up to the length of b.
func (p *peekReader) peek(b []byte) (n int, err os.Error) {
if len(p.data) > 0 {
n = copy(b, p.data)
if n == len(b) {
return
}
}()
NewDecoder(r).debug()
b = b[n:]
}
if len(b) == 0 {
return
}
m, e := io.ReadFull(p.r, b)
if m > 0 {
p.data = append(p.data, b[:m]...)
}
n += m
if e == io.ErrUnexpectedEOF {
// That means m > 0 but we reached EOF. If we got data
// we won't complain about not being able to peek enough.
if n > 0 {
e = nil
} else {
e = os.EOF
}
}
return n, e
}
// debugRecv is like recv but prints what it sees.
func (dec *Decoder) debugRecv() {
if dec.byteBuffer != nil && dec.byteBuffer.Len() != 0 {
fmt.Printf("error in recv: %d bytes left in input buffer\n", dec.byteBuffer.Len())
// dump prints the next nBytes of the input.
// It arranges to print the output aligned from call to
// call, to make it easy to see what has been consumed.
func (deb *debugger) dump(nBytes int, format string, args ...interface{}) {
if !dumpBytes {
return
}
fmt.Fprintf(os.Stderr, format+" ", args...)
if nBytes < 0 {
fmt.Fprintf(os.Stderr, "nbytes is negative! %d\n", nBytes)
return
}
// Read a count.
var nbytes uint64
nbytes, dec.err = decodeUintReader(dec.r, dec.countBuf[0:])
if dec.err != nil {
fmt.Printf("receiver error on count: %s\n", dec.err)
data := make([]byte, nBytes)
n, _ := deb.r.peek(data)
if n == 0 {
os.Stderr.Write(empty)
return
}
// Allocate the buffer.
if nbytes > uint64(len(dec.buf)) {
dec.buf = make([]byte, nbytes+1000)
b := new(bytes.Buffer)
fmt.Fprint(b, "{\n")
// Blanks until first byte
lineLength := 0
if n := len(data); n%10 != 0 {
lineLength = 10 - n%10
fmt.Fprintf(b, "\t%s", blanks[:lineLength*3])
}
dec.byteBuffer = bytes.NewBuffer(dec.buf[0:nbytes])
// Read the data
_, dec.err = io.ReadFull(dec.r, dec.buf[0:nbytes])
if dec.err != nil {
fmt.Printf("receiver error on data: %s\n", dec.err)
if dec.err == os.EOF {
dec.err = io.ErrUnexpectedEOF
// 10 bytes per line
for len(data) > 0 {
if lineLength == 0 {
fmt.Fprint(b, "\t")
}
return
m := 10 - lineLength
lineLength = 0
if m > len(data) {
m = len(data)
}
fmt.Fprintf(b, "% x\n", data[:m])
data = data[m:]
}
if dump {
fmt.Printf("received %d bytes:\n\t% x\n", nbytes, dec.byteBuffer.Bytes())
fmt.Fprint(b, "}\n")
os.Stderr.Write(b.Bytes())
}
type debugger struct {
mutex sync.Mutex
r *peekReader
wireType map[typeId]*wireType
tmp []byte // scratch space for decoding uints.
}
// Debug prints a human-readable representation of the gob data read from r.
func Debug(r io.Reader) {
fmt.Fprintln(os.Stderr, "Start of debugging")
deb := &debugger{
r: newPeekReader(r),
wireType: make(map[typeId]*wireType),
tmp: make([]byte, 16),
}
deb.gobStream()
}
// toInt turns an encoded uint64 into an int, according to the marshaling rules.
func toInt(x uint64) int64 {
i := int64(x >> 1)
if x&1 != 0 {
i = ^i
}
return i
}
// readInt returns the next int, which must be present,
// and the number of bytes it consumed.
// Don't call this if you could be at EOF.
func (deb *debugger) readInt() (i int64, w int) {
var u uint64
u, w = deb.readUint()
return toInt(u), w
}
// debug is like Decode but just prints what it finds. It should be safe even for corrupted data.
func (dec *Decoder) debug() {
// readUint returns the next uint, which must be present.
// and the number of bytes it consumed.
// Don't call this if you could be at EOF.
// TODO: handle errors better.
func (deb *debugger) readUint() (x uint64, w int) {
n, w, err := decodeUintReader(deb.r, deb.tmp)
if err != nil {
errorf("debug: read error: %s", err)
}
return n, w
}
// GobStream:
// DelimitedMessage* (until EOF)
func (deb *debugger) gobStream() {
// Make sure we're single-threaded through here.
dec.mutex.Lock()
defer dec.mutex.Unlock()
deb.mutex.Lock()
defer deb.mutex.Unlock()
dec.err = nil
dec.debugRecv()
if dec.err != nil {
return
for deb.delimitedMessage(0) {
}
dec.debugFromBuffer(0, false)
}
// printFromBuffer prints the next value. The buffer contains data, but it may
// be a type descriptor and we may need to load more data to see the value;
// printType takes care of that.
func (dec *Decoder) debugFromBuffer(indent int, countPresent bool) {
for dec.state.b.Len() > 0 {
// Receive a type id.
id := typeId(dec.state.decodeInt())
// DelimitedMessage:
// uint(lengthOfMessage) Message
func (deb *debugger) delimitedMessage(indent tab) bool {
for {
n := deb.loadBlock(true)
if n < 0 {
return false
}
deb.dump(int(n), "Message of length %d", n)
deb.message(indent, n)
}
return true
}
// Is it a new type?
if id < 0 { // 0 is the error state, handled above
// If the id is negative, we have a type.
dec.debugRecvType(-id)
if dec.err != nil {
break
}
continue
// loadBlock preps us to read a message
// of the length specified next in the input. It returns
// the length of the block. The argument tells whether
// an EOF is acceptable now. If it is and one is found,
// the return value is negative.
func (deb *debugger) loadBlock(eofOK bool) int {
n64, _, err := decodeUintReader(deb.r, deb.tmp)
if err != nil {
if eofOK && err == os.EOF {
return -1
}
errorf("debug: unexpected error: %s", err)
}
n := int(n64)
if n < 0 {
errorf("huge value for message length: %d", n64)
}
return n
}
// No, it's a value.
// Make sure the type has been defined already or is a builtin type (for
// top-level singleton values).
if dec.wireType[id] == nil && builtinIdToType[id] == nil {
dec.err = errBadType
// Message:
// TypeSequence TypedValue
// TypeSequence
// (TypeDefinition DelimitedTypeDefinition*)?
// DelimitedTypeDefinition:
// uint(lengthOfTypeDefinition) TypeDefinition
// TypedValue:
// int(typeId) Value
func (deb *debugger) message(indent tab, n int) bool {
for {
// Convert the uint64 to a signed integer typeId
uid, w := deb.readInt()
id := typeId(uid)
n -= w
deb.dump(n, "type id=%d", id)
if id < 0 {
n -= deb.typeDefinition(indent, -id, n)
n = deb.loadBlock(false)
deb.dump(n, "Message of length %d", n)
continue
} else {
deb.value(indent, id, n)
break
}
if countPresent {
dec.state.decodeUint()
}
dec.debugPrint(indent, id)
break
}
return true
}
func (dec *Decoder) debugRecvType(id typeId) {
// Have we already seen this type? That's an error
if _, alreadySeen := dec.wireType[id]; alreadySeen {
dec.err = os.ErrorString("gob: duplicate type received")
return
// TypeDefinition:
// [int(-typeId) (already read)] encodingOfWireType
func (deb *debugger) typeDefinition(indent tab, id typeId, n int) int {
deb.dump(n, "type definition for id %d", id)
// Encoding is of a wireType. Decode the structure as usual
fieldNum := -1
m := 0
// Closures to make it easy to scan.
// Read a uint from the input
getUint := func() uint {
i, w := deb.readUint()
m += w
n -= w
return uint(i)
}
// Read an int from the input
getInt := func() int {
i, w := deb.readInt()
m += w
n -= w
return int(i)
}
// Read a string from the input
getString := func() string {
u, w := deb.readUint()
x := int(u)
m += w
n -= w
b := make([]byte, x)
nb, _ := deb.r.Read(b)
if nb != x {
errorf("corrupted type")
}
m += x
n -= x
return string(b)
}
// Read a typeId from the input
getTypeId := func() typeId {
return typeId(getInt())
}
// Read a delta from the input.
getDelta := func(expect int) int {
u, w := deb.readUint()
m += w
n -= w
delta := int(u)
if delta < 0 || (expect >= 0 && delta != expect) {
errorf("gob decode: corrupted type: delta %d expected %d", delta, expect)
}
return int(u)
}
// Read a CommonType from the input
common := func() CommonType {
fieldNum := -1
name := ""
id := typeId(0)
for {
delta := getDelta(-1)
if delta == 0 {
break
}
fieldNum += delta
switch fieldNum {
case 0:
name = getString()
case 1:
// Id typeId
id = getTypeId()
default:
errorf("corrupted CommonType")
}
}
return CommonType{name, id}
}
// Type:
wire := new(wireType)
dec.err = dec.decode(tWireType, reflect.NewValue(wire))
if dec.err == nil {
printWireType(wire)
}
// Remember we've seen this type.
dec.wireType[id] = wire
// A wireType defines a single field.
delta := getDelta(-1)
fieldNum += delta
switch fieldNum {
case 0: // array type, one field of {{Common}, elem, length}
// Field number 0 is CommonType
getDelta(1)
com := common()
// Field number 1 is type Id of elem
getDelta(1)
id := getTypeId()
// Field number 3 is length
getDelta(1)
length := getInt()
wire.ArrayT = &arrayType{com, id, length}
// Load the next parcel.
dec.debugRecv()
}
case 1: // slice type, one field of {{Common}, elem}
// Field number 0 is CommonType
getDelta(1)
com := common()
// Field number 1 is type Id of elem
getDelta(1)
id := getTypeId()
wire.SliceT = &sliceType{com, id}
func printWireType(wire *wireType) {
fmt.Printf("type definition {\n")
switch {
case wire.ArrayT != nil:
printCommonType("array", &wire.ArrayT.CommonType)
fmt.Printf("\tlen %d\n\telemid %d\n", wire.ArrayT.Len, wire.ArrayT.Elem)
case wire.MapT != nil:
printCommonType("map", &wire.MapT.CommonType)
fmt.Printf("\tkeyid %d\n", wire.MapT.Key)
fmt.Printf("\telemid %d\n", wire.MapT.Elem)
case wire.SliceT != nil:
printCommonType("slice", &wire.SliceT.CommonType)
fmt.Printf("\telemid %d\n", wire.SliceT.Elem)
case wire.StructT != nil:
printCommonType("struct", &wire.StructT.CommonType)
for i, field := range wire.StructT.Field {
fmt.Printf("\tfield %d:\t%s\tid=%d\n", i, field.Name, field.Id)
case 2: // struct type, one field of {{Common}, []fieldType}
// Field number 0 is CommonType
getDelta(1)
com := common()
// Field number 1 is slice of FieldType
getDelta(1)
numField := int(getUint())
field := make([]*fieldType, numField)
for i := 0; i < numField; i++ {
field[i] = new(fieldType)
getDelta(1) // field 0 of fieldType: name
field[i].Name = getString()
getDelta(1) // field 1 of fieldType: id
field[i].Id = getTypeId()
getDelta(0) // end of fieldType
}
wire.StructT = &structType{com, field}
case 3: // map type, one field of {{Common}, key, elem}
// Field number 0 is CommonType
getDelta(1)
com := common()
// Field number 1 is type Id of key
getDelta(1)
keyId := getTypeId()
wire.SliceT = &sliceType{com, id}
// Field number 2 is type Id of elem
getDelta(1)
elemId := getTypeId()
wire.MapT = &mapType{com, keyId, elemId}
default:
errorf("bad field in type %d", fieldNum)
}
fmt.Printf("}\n")
deb.printWireType(indent, wire)
getDelta(0) // end inner type (arrayType, etc.)
getDelta(0) // end wireType
// Remember we've seen this type.
deb.wireType[id] = wire
return m
}
func printCommonType(kind string, common *CommonType) {
fmt.Printf("\t%s %q\n\tid: %d\n", kind, common.Name, common.Id)
// Value:
// ConcreteValue | InterfaceValue
func (deb *debugger) value(indent tab, id typeId, n int) int {
if id == tInterface {
return deb.interfaceValue(indent, n)
}
return deb.concreteValue(indent, id, n)
}
func (dec *Decoder) debugPrint(indent int, id typeId) {
wire, ok := dec.wireType[id]
// ConcreteValue:
// SingletonValue | StructValue
func (deb *debugger) concreteValue(indent tab, id typeId, n int) int {
wire, ok := deb.wireType[id]
if ok && wire.StructT != nil {
dec.debugStruct(indent+1, id, wire)
} else {
dec.debugSingle(indent+1, id, wire)
return deb.structValue(indent, id, n)
}
return deb.singletonValue(indent, id, n)
}
func (dec *Decoder) debugSingle(indent int, id typeId, wire *wireType) {
// SingletonValue:
// int(0) FieldValue
func (deb *debugger) singletonValue(indent tab, id typeId, n int) int {
deb.dump(n, "Singleton value")
// is it a builtin type?
wire := deb.wireType[id]
_, ok := builtinIdToType[id]
if !ok && wire == nil {
errorf("type id %d not defined\n", id)
errorf("type id %d not defined", id)
}
m, w := deb.readInt()
if m != 0 {
errorf("expected zero; got %d", n)
}
dec.state.decodeUint()
dec.printItem(indent, id)
return w + deb.fieldValue(indent, id, n-w)
}
func (dec *Decoder) printItem(indent int, id typeId) {
if dump {
fmt.Printf("print item %d bytes: % x\n", dec.state.b.Len(), dec.state.b.Bytes())
// InterfaceValue:
// NilInterfaceValue | NonNilInterfaceValue
func (deb *debugger) interfaceValue(indent tab, n int) int {
deb.dump(n, "Start of interface value")
nameLen, w := deb.readUint()
n -= w
if n == 0 {
return w + deb.nilInterfaceValue(indent)
}
_, ok := builtinIdToType[id]
if ok {
dec.printBuiltin(indent, id)
return
}
wire, ok := dec.wireType[id]
if !ok {
errorf("type id %d not defined\n", id)
return w + deb.nonNilInterfaceValue(indent, int(nameLen), n)
}
// NilInterfaceValue:
// uint(0) [already read]
func (deb *debugger) nilInterfaceValue(indent tab) int {
fmt.Fprintf(os.Stderr, "%snil interface\n", indent)
return 0
}
// NonNilInterfaceValue:
// ConcreteTypeName TypeSequence InterfaceContents
// ConcreteTypeName:
// uint(lengthOfName) [already read=n] name
// InterfaceContents:
// int(concreteTypeId) DelimitedValue
// DelimitedValue:
// uint(length) Value
func (deb *debugger) nonNilInterfaceValue(indent tab, nameLen, n int) int {
// ConcreteTypeName
b := make([]byte, nameLen)
deb.r.Read(b) // TODO: CHECK THESE READS!!
w := nameLen
n -= nameLen
name := string(b)
fmt.Fprintf(os.Stderr, "%sinterface value, type %q length %d\n", indent, name, n)
for {
x, width := deb.readInt()
n -= w
w += width
id := typeId(x)
if id < 0 {
deb.typeDefinition(indent, -id, n)
n = deb.loadBlock(false)
deb.dump(n, "Message of length %d", n)
} else {
// DelimitedValue
x, width := deb.readUint() // in case we want to ignore the value; we don't.
n -= w
w += width
fmt.Fprintf(os.Stderr, "%sinterface value, type %q id=%d; length %d\n", indent, name, id, x)
ZZ := w + deb.value(indent, id, int(x))
return ZZ
}
}
panic("not reached")
}
// printCommonType prints a common type; used by printWireType.
func (deb *debugger) printCommonType(indent tab, kind string, common *CommonType) {
indent.print()
fmt.Fprintf(os.Stderr, "%s %q id=%d\n", kind, common.Name, common.Id)
}
// printWireType prints the contents of a wireType.
func (deb *debugger) printWireType(indent tab, wire *wireType) {
fmt.Fprintf(os.Stderr, "%stype definition {\n", indent)
indent++
switch {
case wire.ArrayT != nil:
dec.printArray(indent, wire)
deb.printCommonType(indent, "array", &wire.ArrayT.CommonType)
fmt.Fprintf(os.Stderr, "%slen %d\n", indent+1, wire.ArrayT.Len)
fmt.Fprintf(os.Stderr, "%selemid %d\n", indent+1, wire.ArrayT.Elem)
case wire.MapT != nil:
dec.printMap(indent, wire)
deb.printCommonType(indent, "map", &wire.MapT.CommonType)
fmt.Fprintf(os.Stderr, "%skey id=%d\n", indent+1, wire.MapT.Key)
fmt.Fprintf(os.Stderr, "%selem id=%d\n", indent+1, wire.MapT.Elem)
case wire.SliceT != nil:
dec.printSlice(indent, wire)
deb.printCommonType(indent, "slice", &wire.SliceT.CommonType)
fmt.Fprintf(os.Stderr, "%selem id=%d\n", indent+1, wire.SliceT.Elem)
case wire.StructT != nil:
dec.debugStruct(indent, id, wire)
deb.printCommonType(indent, "struct", &wire.StructT.CommonType)
for i, field := range wire.StructT.Field {
fmt.Fprintf(os.Stderr, "%sfield %d:\t%s\tid=%d\n", indent+1, i, field.Name, field.Id)
}
}
indent--
fmt.Fprintf(os.Stderr, "%s}\n", indent)
}
func (dec *Decoder) printArray(indent int, wire *wireType) {
elemId := wire.ArrayT.Elem
n := int(dec.state.decodeUint())
for i := 0; i < n && dec.err == nil; i++ {
dec.printItem(indent, elemId)
}
if n != wire.ArrayT.Len {
tab(indent)
fmt.Printf("(wrong length for array: %d should be %d)\n", n, wire.ArrayT.Len)
// fieldValue prints a value of any type, such as a struct field.
func (deb *debugger) fieldValue(indent tab, id typeId, n int) int {
_, ok := builtinIdToType[id]
if ok {
return deb.printBuiltin(indent, id, n)
}
}
func (dec *Decoder) printMap(indent int, wire *wireType) {
keyId := wire.MapT.Key
elemId := wire.MapT.Elem
n := int(dec.state.decodeUint())
for i := 0; i < n && dec.err == nil; i++ {
dec.printItem(indent, keyId)
dec.printItem(indent+1, elemId)
wire, ok := deb.wireType[id]
if !ok {
errorf("type id %d not defined", id)
}
}
func (dec *Decoder) printSlice(indent int, wire *wireType) {
elemId := wire.SliceT.Elem
n := int(dec.state.decodeUint())
for i := 0; i < n && dec.err == nil; i++ {
dec.printItem(indent, elemId)
switch {
case wire.ArrayT != nil:
return deb.arrayValue(indent, wire, n)
case wire.MapT != nil:
return deb.mapValue(indent, wire, n)
case wire.SliceT != nil:
return deb.sliceValue(indent, wire, n)
case wire.StructT != nil:
return deb.structValue(indent, id, n)
}
panic("unreached")
}
func (dec *Decoder) printBuiltin(indent int, id typeId) {
tab(indent)
// printBuiltin prints a value not of a fundamental type, that is,
// one whose type is known to gobs at bootstrap time.
// That includes interfaces, although they may require
// more unpacking down the line.
func (deb *debugger) printBuiltin(indent tab, id typeId, n int) int {
switch id {
case tBool:
if dec.state.decodeInt() == 0 {
fmt.Printf("false\n")
x, w := deb.readInt()
if x == 0 {
fmt.Fprintf(os.Stderr, "%sfalse\n", indent)
} else {
fmt.Printf("true\n")
fmt.Fprintf(os.Stderr, "%strue\n", indent)
}
return w
case tInt:
fmt.Printf("%d\n", dec.state.decodeInt())
x, w := deb.readInt()
fmt.Fprintf(os.Stderr, "%s%d\n", indent, x)
return w
case tUint:
fmt.Printf("%d\n", dec.state.decodeUint())
x, w := deb.readInt()
fmt.Fprintf(os.Stderr, "%s%d\n", indent, x)
return w
case tFloat:
fmt.Printf("%g\n", floatFromBits(dec.state.decodeUint()))
x, w := deb.readUint()
fmt.Fprintf(os.Stderr, "%s%g\n", indent, floatFromBits(x))
return w
case tBytes:
b := make([]byte, dec.state.decodeUint())
dec.state.b.Read(b)
fmt.Printf("% x\n", b)
x, w := deb.readUint()
b := make([]byte, x)
deb.r.Read(b)
fmt.Fprintf(os.Stderr, "%s{% x}=%q\n", indent, b, b)
return w + int(x)
case tString:
b := make([]byte, dec.state.decodeUint())
dec.state.b.Read(b)
fmt.Printf("%q\n", b)
x, w := deb.readUint()
b := make([]byte, x)
deb.r.Read(b)
fmt.Fprintf(os.Stderr, "%s%q\n", indent, b)
return w + int(x)
case tInterface:
b := make([]byte, dec.state.decodeUint())
dec.state.b.Read(b)
if len(b) == 0 {
fmt.Printf("nil interface")
} else {
fmt.Printf("interface value; type %q\n", b)
dec.debugFromBuffer(indent, true)
}
return deb.interfaceValue(indent, n)
default:
fmt.Print("unknown\n")
}
panic("unknown builtin")
}
// ArrayValue:
// uint(n) Value*n
func (deb *debugger) arrayValue(indent tab, wire *wireType, n int) int {
elemId := wire.ArrayT.Elem
u, w := deb.readUint()
length := int(u)
for i := 0; i < length; i++ {
w += deb.fieldValue(indent, elemId, n-w)
}
if length != wire.ArrayT.Len {
fmt.Fprintf(os.Stderr, "%s(wrong length for array: %d should be %d)\n", indent, length, wire.ArrayT.Len)
}
return w
}
// MapValue:
// uint(n) (Value Value)*n [n (key, value) pairs]
func (deb *debugger) mapValue(indent tab, wire *wireType, n int) int {
keyId := wire.MapT.Key
elemId := wire.MapT.Elem
u, w := deb.readUint()
length := int(u)
for i := 0; i < length; i++ {
w += deb.fieldValue(indent+1, keyId, n-w)
w += deb.fieldValue(indent+1, elemId, n-w)
}
return w
}
// SliceValue:
// uint(n) (n Values)
func (deb *debugger) sliceValue(indent tab, wire *wireType, n int) int {
elemId := wire.SliceT.Elem
u, w := deb.readUint()
length := int(u)
for i := 0; i < length; i++ {
w += deb.fieldValue(indent, elemId, n-w)
}
return w
}
func (dec *Decoder) debugStruct(indent int, id typeId, wire *wireType) {
tab(indent)
fmt.Printf("%s struct {\n", id.name())
// StructValue:
// (int(fieldDelta) FieldValue)*
func (deb *debugger) structValue(indent tab, id typeId, n int) int {
deb.dump(n, "Start of struct value of %q id=%d\n<<\n", id.name(), id)
fmt.Fprintf(os.Stderr, "%s%s struct {\n", indent, id.name())
wire, ok := deb.wireType[id]
if !ok {
errorf("type id %d not defined", id)
}
strct := wire.StructT
state := newDecodeState(dec, dec.state.b)
state.fieldnum = -1
for dec.err == nil {
delta := int(state.decodeUint())
if delta < 0 {
errorf("gob decode: corrupted data: negative delta")
}
fieldNum := -1
indent++
w := 0
for {
delta, wid := deb.readUint()
w += wid
n -= wid
if delta == 0 { // struct terminator is zero delta fieldnum
break
}
fieldNum := state.fieldnum + delta
fieldNum += int(delta)
if fieldNum < 0 || fieldNum >= len(strct.Field) {
errorf("field number out of range")
deb.dump(n, "field number out of range: prevField=%d delta=%d", fieldNum-int(delta), delta)
break
}
tab(indent)
fmt.Printf("%s(%d):\n", wire.StructT.Field[fieldNum].Name, fieldNum)
dec.printItem(indent+1, strct.Field[fieldNum].Id)
state.fieldnum = fieldNum
}
tab(indent)
fmt.Printf(" } // end %s struct\n", id.name())
}
func tab(indent int) {
for i, w := 0, 0; i < indent; i += w {
w = 10
if i+w > indent {
w = indent - i
}
fmt.Print("\t\t\t\t\t\t\t\t\t\t"[:w])
fmt.Fprintf(os.Stderr, "%sfield %d:\t%s\n", indent, fieldNum, wire.StructT.Field[fieldNum].Name)
wid = deb.fieldValue(indent+1, strct.Field[fieldNum].Id, n)
w += wid
n -= wid
}
indent--
fmt.Fprintf(os.Stderr, "%s} // end %s struct\n", indent, id.name())
deb.dump(n, ">> End of struct value of type %d %q", id, id.name())
return w
}
......@@ -49,14 +49,15 @@ func overflow(name string) os.ErrorString {
// decodeUintReader reads an encoded unsigned integer from an io.Reader.
// Used only by the Decoder to read the message length.
func decodeUintReader(r io.Reader, buf []byte) (x uint64, err os.Error) {
_, err = r.Read(buf[0:1])
func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err os.Error) {
width = 1
_, err = r.Read(buf[0:width])
if err != nil {
return
}
b := buf[0]
if b <= 0x7f {
return uint64(b), nil
return uint64(b), width, nil
}
nb := -int(int8(b))
if nb > uint64Size {
......@@ -75,6 +76,7 @@ func decodeUintReader(r io.Reader, buf []byte) (x uint64, err os.Error) {
for i := 0; i < n; i++ {
x <<= 8
x |= uint64(buf[i])
width++
}
return
}
......
......@@ -58,7 +58,7 @@ func (dec *Decoder) recvType(id typeId) {
dec.wireType[id] = wire
// Load the next parcel.
dec.recv()
dec.recvMessage()
}
// Decode reads the next value from the connection and stores
......@@ -76,23 +76,28 @@ func (dec *Decoder) Decode(e interface{}) os.Error {
return dec.DecodeValue(value)
}
// recv reads the next count-delimited item from the input. It is the converse
// of Encoder.send.
func (dec *Decoder) recv() {
// recvMessage reads the next count-delimited item from the input. It is the converse
// of Encoder.writeMessage.
func (dec *Decoder) recvMessage() {
// Read a count.
var nbytes uint64
nbytes, dec.err = decodeUintReader(dec.r, dec.countBuf[0:])
nbytes, _, dec.err = decodeUintReader(dec.r, dec.countBuf[0:])
if dec.err != nil {
return
}
dec.readMessage(int(nbytes), dec.r)
}
// readMessage reads the next nbytes bytes from the input.
func (dec *Decoder) readMessage(nbytes int, r io.Reader) {
// Allocate the buffer.
if nbytes > uint64(len(dec.buf)) {
if nbytes > len(dec.buf) {
dec.buf = make([]byte, nbytes+1000)
}
dec.byteBuffer = bytes.NewBuffer(dec.buf[0:nbytes])
// Read the data
_, dec.err = io.ReadFull(dec.r, dec.buf[0:nbytes])
_, dec.err = io.ReadFull(r, dec.buf[0:nbytes])
if dec.err != nil {
if dec.err == os.EOF {
dec.err = io.ErrUnexpectedEOF
......@@ -103,7 +108,7 @@ func (dec *Decoder) recv() {
// decodeValueFromBuffer grabs the next value from the input. The Decoder's
// buffer already contains data. If the next item in the buffer is a type
// descriptor, it may be necessary to reload the buffer, but recvType does that.
// descriptor, it will be necessary to reload the buffer; recvType does that.
func (dec *Decoder) decodeValueFromBuffer(value reflect.Value, ignoreInterfaceValue, countPresent bool) {
for dec.state.b.Len() > 0 {
// Receive a type id.
......@@ -150,7 +155,7 @@ func (dec *Decoder) DecodeValue(value reflect.Value) os.Error {
defer dec.mutex.Unlock()
dec.err = nil
dec.recv()
dec.recvMessage()
if dec.err != nil {
return dec.err
}
......
......@@ -219,6 +219,54 @@ be predefined or be defined before the value in the stream.
*/
package gob
/*
Grammar:
Tokens starting with a lower case letter are terminals; int(n)
and uint(n) represent the signed/unsigned encodings of the value n.
GobStream:
DelimitedMessage*
DelimitedMessage:
uint(lengthOfMessage) Message
Message:
TypeSequence TypedValue
TypeSequence
(TypeDefinition DelimitedTypeDefinition*)?
DelimitedTypeDefinition:
uint(lengthOfTypeDefinition) TypeDefinition
TypedValue:
int(typeId) Value
TypeDefinition:
int(-typeId) encodingOfWireType
Value:
ConcreteValue | InterfaceValue
ConcreteValue:
SingletonValue | StructValue
SingletonValue:
int(0) FieldValue
InterfaceValue:
NilInterfaceValue | NonNilInterfaceValue
NilInterfaceValue:
uint(0)
NonNilInterfaceValue:
ConcreteTypeName TypeSequence InterfaceContents
ConcreteTypeName:
uint(lengthOfName) [already read=n] name
InterfaceContents:
int(concreteTypeId) DelimitedValue
DelimitedValue:
uint(length) Value
ArrayValue:
uint(n) Value*n [n elements]
MapValue:
uint(n) (Value Value)*n [n (key, value) pairs]
SliceValue:
uint(n) Value*n [n elements]
StructValue:
(uint(fieldDelta) FieldValue)*
*/
/*
For implementers and the curious, here is an encoded example. Given
type Point struct {x, y int}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment