Commit 876455f3 authored by Nan Deng's avatar Nan Deng Committed by Adam Langley

crypto/rsa: implement PSS signatures.

This change contains an implementation of the RSASSA-PSS signature
algorithm described in RFC 3447.

R=agl, agl
CC=gobot, golang-dev, r
https://golang.org/cl/9438043
parent adbe59e3
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rsa
// This file implementes the PSS signature scheme [1].
//
// [1] http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
import (
"bytes"
"crypto"
"errors"
"hash"
"io"
"math/big"
)
func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
// See [1], section 9.1.1
hLen := hash.Size()
sLen := len(salt)
emLen := (emBits + 7) / 8
// 1. If the length of M is greater than the input limitation for the
// hash function (2^61 - 1 octets for SHA-1), output "message too
// long" and stop.
//
// 2. Let mHash = Hash(M), an octet string of length hLen.
if len(mHash) != hLen {
return nil, errors.New("crypto/rsa: input must be hashed message")
}
// 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
if emLen < hLen+sLen+2 {
return nil, errors.New("crypto/rsa: encoding error")
}
em := make([]byte, emLen)
db := em[:emLen-sLen-hLen-2+1+sLen]
h := em[emLen-sLen-hLen-2+1+sLen : emLen-1]
// 4. Generate a random octet string salt of length sLen; if sLen = 0,
// then salt is the empty string.
//
// 5. Let
// M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
//
// M' is an octet string of length 8 + hLen + sLen with eight
// initial zero octets.
//
// 6. Let H = Hash(M'), an octet string of length hLen.
var prefix [8]byte
hash.Write(prefix[:])
hash.Write(mHash)
hash.Write(salt)
h = hash.Sum(h[:0])
hash.Reset()
// 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
// zero octets. The length of PS may be 0.
//
// 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
// emLen - hLen - 1.
db[emLen-sLen-hLen-2] = 0x01
copy(db[emLen-sLen-hLen-1:], salt)
// 9. Let dbMask = MGF(H, emLen - hLen - 1).
//
// 10. Let maskedDB = DB \xor dbMask.
mgf1XOR(db, hash, h)
// 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
// maskedDB to zero.
db[0] &= (0xFF >> uint(8*emLen-emBits))
// 12. Let EM = maskedDB || H || 0xbc.
em[emLen-1] = 0xBC
// 13. Output EM.
return em, nil
}
func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
// 1. If the length of M is greater than the input limitation for the
// hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
// and stop.
//
// 2. Let mHash = Hash(M), an octet string of length hLen.
hLen := hash.Size()
if hLen != len(mHash) {
return ErrVerification
}
// 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
emLen := (emBits + 7) / 8
if emLen < hLen+sLen+2 {
return ErrVerification
}
// 4. If the rightmost octet of EM does not have hexadecimal value
// 0xbc, output "inconsistent" and stop.
if em[len(em)-1] != 0xBC {
return ErrVerification
}
// 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
// let H be the next hLen octets.
db := em[:emLen-hLen-1]
h := em[emLen-hLen-1 : len(em)-1]
// 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
// maskedDB are not all equal to zero, output "inconsistent" and
// stop.
if em[0]&(0xFF<<uint(8-(8*emLen-emBits))) != 0 {
return ErrVerification
}
// 7. Let dbMask = MGF(H, emLen - hLen - 1).
//
// 8. Let DB = maskedDB \xor dbMask.
mgf1XOR(db, hash, h)
// 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
// to zero.
db[0] &= (0xFF >> uint(8*emLen-emBits))
if sLen == PSSSaltLengthAuto {
FindSaltLength:
for sLen = emLen - (hLen + 2); sLen >= 0; sLen-- {
switch db[emLen-hLen-sLen-2] {
case 1:
break FindSaltLength
case 0:
continue
default:
return ErrVerification
}
}
if sLen < 0 {
return ErrVerification
}
} else {
// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
// or if the octet at position emLen - hLen - sLen - 1 (the leftmost
// position is "position 1") does not have hexadecimal value 0x01,
// output "inconsistent" and stop.
for _, e := range db[:emLen-hLen-sLen-2] {
if e != 0x00 {
return ErrVerification
}
}
if db[emLen-hLen-sLen-2] != 0x01 {
return ErrVerification
}
}
// 11. Let salt be the last sLen octets of DB.
salt := db[len(db)-sLen:]
// 12. Let
// M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
// M' is an octet string of length 8 + hLen + sLen with eight
// initial zero octets.
//
// 13. Let H' = Hash(M'), an octet string of length hLen.
var prefix [8]byte
hash.Write(prefix[:])
hash.Write(mHash)
hash.Write(salt)
h0 := hash.Sum(nil)
// 14. If H = H', output "consistent." Otherwise, output "inconsistent."
if !bytes.Equal(h0, h) {
return ErrVerification
}
return nil
}
// signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt.
// Note that hashed must be the result of hashing the input message using the
// given hash funcion. salt is a random sequence of bytes whose length will be
// later used to verify the signature.
func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) (s []byte, err error) {
nBits := priv.N.BitLen()
em, err := emsaPSSEncode(hashed, nBits-1, salt, hash.New())
if err != nil {
return
}
m := new(big.Int).SetBytes(em)
c, err := decrypt(rand, priv, m)
if err != nil {
return
}
s = make([]byte, (nBits+7)/8)
copyWithLeftPad(s, c.Bytes())
return
}
const (
// PSSSaltLengthAuto causes the salt in a PSS signature to be as large
// as possible when signing, and to be auto-detected when verifying.
PSSSaltLengthAuto = 0
// PSSSaltLengthEqualsHash causes the salt length to equal the length
// of the hash used in the signature.
PSSSaltLengthEqualsHash = -1
)
// PSSOptions contains options for creating and verifying PSS signatures.
type PSSOptions struct {
// SaltLength controls the length of the salt used in the PSS
// signature. It can either be a number of bytes, or one of the special
// PSSSaltLength constants.
SaltLength int
}
func (opts *PSSOptions) saltLength() int {
if opts == nil {
return PSSSaltLengthAuto
}
return opts.SaltLength
}
// SignPSS calculates the signature of hashed using RSASSA-PSS [1].
// Note that hashed must be the result of hashing the input message using the
// given hash funcion. The opts argument may be nil, in which case sensible
// defaults are used.
func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error) {
saltLength := opts.saltLength()
switch saltLength {
case PSSSaltLengthAuto:
saltLength = (priv.N.BitLen()+7)/8 - 2 - hash.Size()
case PSSSaltLengthEqualsHash:
saltLength = hash.Size()
}
salt := make([]byte, saltLength)
if _, err = io.ReadFull(rand, salt); err != nil {
return
}
return signPSSWithSalt(rand, priv, hash, hashed, salt)
}
// VerifyPSS verifies a PSS signature.
// hashed is the result of hashing the input message using the given hash
// function and sig is the signature. A valid signature is indicated by
// returning a nil error. The opts argument may be nil, in which case sensible
// defaults are used.
func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error {
return verifyPSS(pub, hash, hashed, sig, opts.saltLength())
}
// verifyPSS verifies a PSS signature with the given salt length.
func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error {
nBits := pub.N.BitLen()
if len(sig) != (nBits+7)/8 {
return ErrVerification
}
s := new(big.Int).SetBytes(sig)
m := encrypt(new(big.Int), pub, s)
emBits := nBits - 1
emLen := (emBits + 7) / 8
if emLen < len(m.Bytes()) {
return ErrVerification
}
em := make([]byte, emLen)
copyWithLeftPad(em, m.Bytes())
if saltLen == PSSSaltLengthEqualsHash {
saltLen = hash.Size()
}
return emsaPSSVerify(hashed, em, emBits, saltLen, hash.New())
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rsa
import (
"bufio"
"bytes"
"compress/bzip2"
"crypto"
_ "crypto/md5"
"crypto/rand"
"crypto/sha1"
_ "crypto/sha256"
"encoding/hex"
"math/big"
"os"
"strconv"
"strings"
"testing"
)
func TestEMSAPSS(t *testing.T) {
// Test vector in file pss-int.txt from: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
msg := []byte{
0x85, 0x9e, 0xef, 0x2f, 0xd7, 0x8a, 0xca, 0x00, 0x30, 0x8b,
0xdc, 0x47, 0x11, 0x93, 0xbf, 0x55, 0xbf, 0x9d, 0x78, 0xdb,
0x8f, 0x8a, 0x67, 0x2b, 0x48, 0x46, 0x34, 0xf3, 0xc9, 0xc2,
0x6e, 0x64, 0x78, 0xae, 0x10, 0x26, 0x0f, 0xe0, 0xdd, 0x8c,
0x08, 0x2e, 0x53, 0xa5, 0x29, 0x3a, 0xf2, 0x17, 0x3c, 0xd5,
0x0c, 0x6d, 0x5d, 0x35, 0x4f, 0xeb, 0xf7, 0x8b, 0x26, 0x02,
0x1c, 0x25, 0xc0, 0x27, 0x12, 0xe7, 0x8c, 0xd4, 0x69, 0x4c,
0x9f, 0x46, 0x97, 0x77, 0xe4, 0x51, 0xe7, 0xf8, 0xe9, 0xe0,
0x4c, 0xd3, 0x73, 0x9c, 0x6b, 0xbf, 0xed, 0xae, 0x48, 0x7f,
0xb5, 0x56, 0x44, 0xe9, 0xca, 0x74, 0xff, 0x77, 0xa5, 0x3c,
0xb7, 0x29, 0x80, 0x2f, 0x6e, 0xd4, 0xa5, 0xff, 0xa8, 0xba,
0x15, 0x98, 0x90, 0xfc,
}
salt := []byte{
0xe3, 0xb5, 0xd5, 0xd0, 0x02, 0xc1, 0xbc, 0xe5, 0x0c, 0x2b,
0x65, 0xef, 0x88, 0xa1, 0x88, 0xd8, 0x3b, 0xce, 0x7e, 0x61,
}
expected := []byte{
0x66, 0xe4, 0x67, 0x2e, 0x83, 0x6a, 0xd1, 0x21, 0xba, 0x24,
0x4b, 0xed, 0x65, 0x76, 0xb8, 0x67, 0xd9, 0xa4, 0x47, 0xc2,
0x8a, 0x6e, 0x66, 0xa5, 0xb8, 0x7d, 0xee, 0x7f, 0xbc, 0x7e,
0x65, 0xaf, 0x50, 0x57, 0xf8, 0x6f, 0xae, 0x89, 0x84, 0xd9,
0xba, 0x7f, 0x96, 0x9a, 0xd6, 0xfe, 0x02, 0xa4, 0xd7, 0x5f,
0x74, 0x45, 0xfe, 0xfd, 0xd8, 0x5b, 0x6d, 0x3a, 0x47, 0x7c,
0x28, 0xd2, 0x4b, 0xa1, 0xe3, 0x75, 0x6f, 0x79, 0x2d, 0xd1,
0xdc, 0xe8, 0xca, 0x94, 0x44, 0x0e, 0xcb, 0x52, 0x79, 0xec,
0xd3, 0x18, 0x3a, 0x31, 0x1f, 0xc8, 0x96, 0xda, 0x1c, 0xb3,
0x93, 0x11, 0xaf, 0x37, 0xea, 0x4a, 0x75, 0xe2, 0x4b, 0xdb,
0xfd, 0x5c, 0x1d, 0xa0, 0xde, 0x7c, 0xec, 0xdf, 0x1a, 0x89,
0x6f, 0x9d, 0x8b, 0xc8, 0x16, 0xd9, 0x7c, 0xd7, 0xa2, 0xc4,
0x3b, 0xad, 0x54, 0x6f, 0xbe, 0x8c, 0xfe, 0xbc,
}
hash := sha1.New()
hash.Write(msg)
hashed := hash.Sum(nil)
encoded, err := emsaPSSEncode(hashed, 1023, salt, sha1.New())
if err != nil {
t.Errorf("Error from emsaPSSEncode: %s\n", err)
}
if !bytes.Equal(encoded, expected) {
t.Errorf("Bad encoding. got %x, want %x", encoded, expected)
}
if err = emsaPSSVerify(hashed, encoded, 1023, len(salt), sha1.New()); err != nil {
t.Errorf("Bad verification: %s", err)
}
}
// TestPSSGolden tests all the test vectors in pss-vect.txt from
// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
func TestPSSGolden(t *testing.T) {
inFile, err := os.Open("testdata/pss-vect.txt.bz2")
if err != nil {
t.Fatalf("Failed to open input file: %s", err)
}
defer inFile.Close()
// The pss-vect.txt file contains RSA keys and then a series of
// signatures. A goroutine is used to preprocess the input by merging
// lines, removing spaces in hex values and identifying the start of
// new keys and signature blocks.
const newKeyMarker = "START NEW KEY"
const newSignatureMarker = "START NEW SIGNATURE"
values := make(chan string)
go func() {
defer close(values)
scanner := bufio.NewScanner(bzip2.NewReader(inFile))
var partialValue string
lastWasValue := true
for scanner.Scan() {
line := scanner.Text()
switch {
case len(line) == 0:
if len(partialValue) > 0 {
values <- strings.Replace(partialValue, " ", "", -1)
partialValue = ""
lastWasValue = true
}
continue
case strings.HasPrefix(line, "# ======") && lastWasValue:
values <- newKeyMarker
lastWasValue = false
case strings.HasPrefix(line, "# ------") && lastWasValue:
values <- newSignatureMarker
lastWasValue = false
case strings.HasPrefix(line, "#"):
continue
default:
partialValue += line
}
}
if err := scanner.Err(); err != nil {
panic(err)
}
}()
var key *PublicKey
var hashed []byte
hash := crypto.SHA1
h := hash.New()
opts := &PSSOptions{
SaltLength: PSSSaltLengthEqualsHash,
}
for marker := range values {
switch marker {
case newKeyMarker:
key = new(PublicKey)
nHex, ok := <-values
if !ok {
continue
}
key.N = bigFromHex(nHex)
key.E = intFromHex(<-values)
// We don't care for d, p, q, dP, dQ or qInv.
for i := 0; i < 6; i++ {
<-values
}
case newSignatureMarker:
msg := fromHex(<-values)
<-values // skip salt
sig := fromHex(<-values)
h.Reset()
h.Write(msg)
hashed = h.Sum(hashed[:0])
if err := VerifyPSS(key, hash, hashed, sig, opts); err != nil {
t.Error(err)
}
default:
t.Fatalf("unknown marker: " + marker)
}
}
}
// TestPSSOpenSSL ensures that we can verify a PSS signature from OpenSSL with
// the default options. OpenSSL sets the salt length to be maximal.
func TestPSSOpenSSL(t *testing.T) {
hash := crypto.SHA256
h := hash.New()
h.Write([]byte("testing"))
hashed := h.Sum(nil)
// Generated with `echo -n testing | openssl dgst -sign key.pem -sigopt rsa_padding_mode:pss -sha256 > sig`
sig := []byte{
0x95, 0x59, 0x6f, 0xd3, 0x10, 0xa2, 0xe7, 0xa2, 0x92, 0x9d,
0x4a, 0x07, 0x2e, 0x2b, 0x27, 0xcc, 0x06, 0xc2, 0x87, 0x2c,
0x52, 0xf0, 0x4a, 0xcc, 0x05, 0x94, 0xf2, 0xc3, 0x2e, 0x20,
0xd7, 0x3e, 0x66, 0x62, 0xb5, 0x95, 0x2b, 0xa3, 0x93, 0x9a,
0x66, 0x64, 0x25, 0xe0, 0x74, 0x66, 0x8c, 0x3e, 0x92, 0xeb,
0xc6, 0xe6, 0xc0, 0x44, 0xf3, 0xb4, 0xb4, 0x2e, 0x8c, 0x66,
0x0a, 0x37, 0x9c, 0x69,
}
if err := VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, nil); err != nil {
t.Error(err)
}
}
func TestPSSSigning(t *testing.T) {
var saltLengthCombinations = []struct {
signSaltLength, verifySaltLength int
good bool
}{
{PSSSaltLengthAuto, PSSSaltLengthAuto, true},
{PSSSaltLengthEqualsHash, PSSSaltLengthAuto, true},
{PSSSaltLengthEqualsHash, PSSSaltLengthEqualsHash, true},
{PSSSaltLengthEqualsHash, 8, false},
{PSSSaltLengthAuto, PSSSaltLengthEqualsHash, false},
{8, 8, true},
}
hash := crypto.MD5
h := hash.New()
h.Write([]byte("testing"))
hashed := h.Sum(nil)
var opts PSSOptions
for i, test := range saltLengthCombinations {
opts.SaltLength = test.signSaltLength
sig, err := SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, &opts)
if err != nil {
t.Errorf("#%d: error while signing: %s", i, err)
continue
}
opts.SaltLength = test.verifySaltLength
err = VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, &opts)
if (err == nil) != test.good {
t.Errorf("#%d: bad result, wanted: %t, got: %s", i, test.good, err)
}
}
}
func bigFromHex(hex string) *big.Int {
n, ok := new(big.Int).SetString(hex, 16)
if !ok {
panic("bad hex: " + hex)
}
return n
}
func intFromHex(hex string) int {
i, err := strconv.ParseInt(hex, 16, 32)
if err != nil {
panic(err)
}
return int(i)
}
func fromHex(hexStr string) []byte {
s, err := hex.DecodeString(hexStr)
if err != nil {
panic(err)
}
return s
}
......@@ -120,8 +120,10 @@ func testKeyBasics(t *testing.T, priv *PrivateKey) {
}
func fromBase10(base10 string) *big.Int {
i := new(big.Int)
i.SetString(base10, 10)
i, ok := new(big.Int).SetString(base10, 10)
if !ok {
panic("bad number: " + base10)
}
return i
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment