Commit 8afeb52c authored by Robert Griesemer's avatar Robert Griesemer

- removed implementation restrictions for creation of small

  Natural, Integer, and Rational numbers
- added Value() methods to access small Natural and Integers
  as uint64 or int64 respectively, and to get the components
  of Rational numbers
- fixed a bug with Integer creation
- removed some _'s from names
- added more comments in places
- added test cases

R=rsc
DELTA=184  (127 added, 11 deleted, 46 changed)
OCL=31210
CL=31265
parent 0417aafe
......@@ -59,12 +59,12 @@ type (
const (
_LogW = 64;
_LogH = 4; // bits for a hex digit (= small number)
_LogB = _LogW - _LogH; // largest bit-width available
logW = 64;
logH = 4; // bits for a hex digit (= small number)
logB = logW - logH; // largest bit-width available
// half-digits
_W2 = _LogB / 2; // width
_W2 = logB / 2; // width
_B2 = 1 << _W2; // base
_M2 = _B2 - 1; // mask
......@@ -86,11 +86,12 @@ func assert(p bool) {
func isSmall(x digit) bool {
return x < 1<<_LogH;
return x < 1<<logH;
}
// For debugging.
// For debugging. Keep around.
/*
func dump(x []digit) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
......@@ -98,6 +99,7 @@ func dump(x []digit) {
}
println();
}
*/
// ----------------------------------------------------------------------------
......@@ -116,21 +118,66 @@ var (
// Nat creates a small natural number with value x.
// Implementation restriction: At the moment, only values
// x < (1<<60) are supported.
//
func Nat(x uint) Natural {
func Nat(x uint64) Natural {
// avoid allocation for common small values
switch x {
case 0: return natZero;
case 1: return natOne;
case 2: return natTwo;
case 10: return natTen;
}
assert(digit(x) < _B);
return Natural{digit(x)};
// single-digit values
if x < _B {
return Natural{digit(x)};
}
// compute number of digits required to represent x
// (this is usually 1 or 2, but the algorithm works
// for any base)
n := 0;
for t := x; t > 0; t >>= _W {
n++;
}
// split x into digits
z := make(Natural, n);
for i := 0; i < n; i++ {
z[i] = digit(x & _M);
x >>= _W;
}
return z;
}
// Value returns the lowest 64bits of x.
//
func (x Natural) Value() uint64 {
// single-digit values
n := len(x);
switch n {
case 0: return 0;
case 1: return uint64(x[0]);
}
// multi-digit values
// (this is usually 1 or 2, but the algorithm works
// for any base)
z := uint64(0);
s := uint(0);
for i := 0; i < n && s < 64; i++ {
z += uint64(x[i]) << s;
s += _W;
}
return z;
}
// Predicates
// IsEven returns true iff x is divisible by 2.
//
func (x Natural) IsEven() bool {
......@@ -632,7 +679,11 @@ func (x Natural) Cmp(y Natural) int {
}
func log2(x digit) uint {
// log2 computes the binary logarithm of x for x > 0.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0 a run-time error occurs.
//
func log2(x uint64) uint {
assert(x > 0);
n := uint(0);
for x > 0 {
......@@ -650,7 +701,7 @@ func log2(x digit) uint {
func (x Natural) Log2() uint {
n := len(x);
if n > 0 {
return (uint(n) - 1)*_W + log2(x[n - 1]);
return (uint(n) - 1)*_W + log2(uint64(x[n - 1]));
}
panic("Log2(0)");
}
......@@ -681,7 +732,7 @@ func (x Natural) ToString(base uint) string {
// allocate buffer for conversion
assert(2 <= base && base <= 16);
n := (x.Log2() + 1) / log2(digit(base)) + 1; // +1: round up
n := (x.Log2() + 1) / log2(uint64(base)) + 1; // +1: round up
s := make([]byte, n);
// don't destroy x
......@@ -728,7 +779,7 @@ func (x Natural) Format(h fmt.State, c int) {
func hexvalue(ch byte) uint {
d := uint(1 << _LogH);
d := uint(1 << logH);
switch {
case '0' <= ch && ch <= '9': d = uint(ch - '0');
case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10;
......@@ -839,8 +890,8 @@ func (xp Natural) Pow(n uint) Natural {
func MulRange(a, b uint) Natural {
switch {
case a > b: return Nat(1);
case a == b: return Nat(a);
case a + 1 == b: return Nat(a).Mul(Nat(b));
case a == b: return Nat(uint64(a));
case a + 1 == b: return Nat(uint64(a)).Mul(Nat(uint64(b)));
}
m := (a + b)>>1;
assert(a <= m && m < b);
......@@ -903,25 +954,36 @@ func MakeInt(sign bool, mant Natural) *Integer {
// Int creates a small integer with value x.
// Implementation restriction: At the moment, only values
// with an absolute value |x| < (1<<60) are supported.
//
func Int(x int) *Integer {
sign := false;
var ux uint;
func Int(x int64) *Integer {
var ux uint64;
if x < 0 {
sign = true;
if -x == x {
// smallest negative integer
t := ^0;
ux = ^(uint(t) >> 1);
} else {
ux = uint(-x);
}
// For the most negative x, -x == x, and
// the bit pattern has the correct value.
ux = uint64(-x);
} else {
ux = uint(x);
ux = uint64(x);
}
return MakeInt(sign, Nat(ux));
return MakeInt(x < 0, Nat(ux));
}
// Value returns the value of x, if x fits into an int64;
// otherwise the result is undefined.
//
func (x *Integer) Value() int64 {
z := int64(x.mant.Value());
if x.sign {
z = -z;
}
return z;
}
// Abs returns the absolute value of x.
//
func (x *Integer) Abs() Natural {
return x.mant;
}
......@@ -1303,10 +1365,8 @@ func MakeRat(a *Integer, b Natural) *Rational {
// Rat creates a small rational number with value a0/b0.
// Implementation restriction: At the moment, only values a0, b0
// with an absolute value |a0|, |b0| < (1<<60) are supported.
//
func Rat(a0 int, b0 int) *Rational {
func Rat(a0 int64, b0 int64) *Rational {
a, b := Int(a0), Int(b0);
if b.sign {
a = a.Neg();
......@@ -1315,6 +1375,13 @@ func Rat(a0 int, b0 int) *Rational {
}
// Value returns the numerator and denominator of x.
//
func (x *Rational) Value() (numerator *Integer, denominator Natural) {
return x.a, x.b;
}
// Predicates
// IsZero returns true iff x == 0.
......@@ -1454,7 +1521,7 @@ func RatFromString(s string, base uint) (*Rational, uint, int) {
alen++;
b, base, blen = NatFromString(s[alen : len(s)], abase);
assert(base == abase);
f := Nat(base).Pow(uint(blen));
f := Nat(uint64(base)).Pow(uint(blen));
a = MakeInt(a.sign, a.mant.Mul(f).Add(b));
b = f;
}
......
......@@ -99,9 +99,31 @@ func rat_eq(n uint, x, y *bignum.Rational) {
}
}
func TestNatConv(t *testing.T) {
tester = t;
test_msg = "NatConvA";
type entry1 struct { x uint64; s string };
tab := []entry1{
entry1{0, "0"},
entry1{255, "255"},
entry1{65535, "65535"},
entry1{4294967295, "4294967295"},
entry1{18446744073709551615, "18446744073709551615"},
};
for i, e := range tab {
test(100 + uint(i), bignum.Nat(e.x).String() == e.s);
test(200 + uint(i), natFromString(e.s, 0, nil).Value() == e.x);
}
test_msg = "NatConvC";
z := uint64(7);
for i := uint(0); i <= 64; i++ {
test(i, bignum.Nat(z).Value() == z);
z <<= 1;
}
test_msg = "NatConvD";
nat_eq(0, a, bignum.Nat(991));
nat_eq(1, b, bignum.Fact(20));
nat_eq(2, c, bignum.Fact(100));
......@@ -109,7 +131,7 @@ func TestNatConv(t *testing.T) {
test(4, b.String() == sb);
test(5, c.String() == sc);
test_msg = "NatConvB";
test_msg = "NatConvE";
var slen int;
nat_eq(10, natFromString("0", 0, nil), nat_zero);
nat_eq(11, natFromString("123", 0, nil), bignum.Nat(123));
......@@ -118,22 +140,49 @@ func TestNatConv(t *testing.T) {
nat_eq(14, natFromString("0x1fg", 0, &slen), bignum.Nat(1*16 + 15));
test(4, slen == 4);
test_msg = "NatConvC";
test_msg = "NatConvF";
tmp := c.Mul(c);
for base := uint(2); base <= 16; base++ {
nat_eq(base, natFromString(tmp.ToString(base), base, nil), tmp);
}
test_msg = "NatConvD";
test_msg = "NatConvG";
x := bignum.Nat(100);
y, b, _ := bignum.NatFromString(fmt.Sprintf("%b", &x), 2);
nat_eq(100, y, x);
}
func abs(x int64) uint64 {
if x < 0 {
x = -x;
}
return uint64(x);
}
func TestIntConv(t *testing.T) {
tester = t;
test_msg = "IntConv";
test_msg = "IntConvA";
type entry2 struct { x int64; s string };
tab := []entry2{
entry2{0, "0"},
entry2{-128, "-128"},
entry2{127, "127"},
entry2{-32768, "-32768"},
entry2{32767, "32767"},
entry2{-2147483648, "-2147483648"},
entry2{2147483647, "2147483647"},
entry2{-9223372036854775808, "-9223372036854775808"},
entry2{9223372036854775807, "9223372036854775807"},
};
for i, e := range tab {
test(100 + uint(i), bignum.Int(e.x).String() == e.s);
test(200 + uint(i), intFromString(e.s, 0, nil).Value() == e.x);
test(300 + uint(i), bignum.Int(e.x).Abs().Value() == abs(e.x));
}
test_msg = "IntConvB";
var slen int;
int_eq(0, intFromString("0", 0, nil), int_zero);
int_eq(1, intFromString("-0", 0, nil), int_zero);
......@@ -180,7 +229,7 @@ func add(x, y bignum.Natural) bignum.Natural {
}
func sum(n uint, scale bignum.Natural) bignum.Natural {
func sum(n uint64, scale bignum.Natural) bignum.Natural {
s := nat_zero;
for ; n > 0; n-- {
s = add(s, bignum.Nat(n).Mul(scale));
......@@ -196,9 +245,9 @@ func TestNatAdd(t *testing.T) {
nat_eq(1, add(nat_zero, c), c);
test_msg = "NatAddB";
for i := uint(0); i < 100; i++ {
for i := uint64(0); i < 100; i++ {
t := bignum.Nat(i);
nat_eq(i, sum(i, c), t.Mul(t).Add(t).Shr(1).Mul(c));
nat_eq(uint(i), sum(i, c), t.Mul(t).Add(t).Shr(1).Mul(c));
}
}
......@@ -226,12 +275,12 @@ func TestNatSub(t *testing.T) {
nat_eq(1, c.Sub(nat_zero), c);
test_msg = "NatSubB";
for i := uint(0); i < 100; i++ {
for i := uint64(0); i < 100; i++ {
t := sum(i, c);
for j := uint(0); j <= i; j++ {
for j := uint64(0); j <= i; j++ {
t = t.Sub(mul(bignum.Nat(j), c));
}
nat_eq(i, t, nat_zero);
nat_eq(uint(i), t, nat_zero);
}
}
......@@ -276,7 +325,7 @@ func TestNatDiv(t *testing.T) {
func TestIntQuoRem(t *testing.T) {
tester = t;
test_msg = "IntQuoRem";
type T struct { x, y, q, r int };
type T struct { x, y, q, r int64 };
a := []T{
T{+8, +3, +2, +2},
T{+8, -3, -2, +2},
......@@ -303,7 +352,7 @@ func TestIntQuoRem(t *testing.T) {
func TestIntDivMod(t *testing.T) {
tester = t;
test_msg = "IntDivMod";
type T struct { x, y, q, r int };
type T struct { x, y, q, r int64 };
a := []T{
T{+8, +3, +2, +2},
T{+8, -3, -2, +2},
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment