Commit 91ceda5c authored by Russ Cox's avatar Russ Cox

add os.ForkExec, os.Exec, os.Wait, exec.OpenCmd.

as thread-safe as possible, given the surrounding system.
add stub RWLock implementation.

R=r
DELTA=852  (834 added, 6 deleted, 12 changed)
OCL=25046
CL=25053
parent 97dcc68f
......@@ -7,8 +7,8 @@ all: install
GC=6g
DIRS=\
container/array\
container\
container/array\
fmt\
hash\
http\
......@@ -26,7 +26,9 @@ DIRS=\
unicode\
FILES=\
bignum\
bufio\
exec\
flag\
log\
malloc\
......@@ -36,15 +38,15 @@ FILES=\
strings\
testing\
utf8\
bignum\
TEST=\
bignum\
bufio\
exec\
once\
sort\
strings\
utf8\
bignum\
clean.dirs: $(addsuffix .dirclean, $(DIRS))
install.dirs: $(addsuffix .dirinstall, $(DIRS))
......@@ -96,6 +98,7 @@ flag.6: fmt.dirinstall
log.6: fmt.dirinstall io.dirinstall os.dirinstall time.dirinstall
testing.6: flag.install fmt.dirinstall
strings.6: utf8.install
exec.6: os.dirinstall
fmt.dirinstall: io.dirinstall reflect.dirinstall strconv.dirinstall
hash.dirinstall: os.dirinstall
......@@ -112,4 +115,5 @@ strconv.dirinstall: math.dirinstall os.dirinstall utf8.install
tabwriter.dirinstall: os.dirinstall io.dirinstall container/array.dirinstall
time.dirinstall: once.install os.dirinstall io.dirinstall
sync.dirinstall:
syscall.dirinstall: sync.dirinstall
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package exec
import (
"os";
"syscall";
)
const (
DevNull = iota;
Passthru;
Pipe;
MergeWithStdout;
)
type Cmd struct {
Stdin *os.FD;
Stdout *os.FD;
Stderr *os.FD;
Pid int;
}
// Given mode (DevNull, etc), return fd for child
// and fd to record in Cmd structure.
func modeToFDs(mode, fd int) (*os.FD, *os.FD, *os.Error) {
switch mode {
case DevNull:
rw := os.O_WRONLY;
if fd == 0 {
rw = os.O_RDONLY;
}
f, err := os.Open("/dev/null", rw, 0);
return f, nil, err;
case Passthru:
switch fd {
case 0:
return os.Stdin, nil, nil;
case 1:
return os.Stdout, nil, nil;
case 2:
return os.Stderr, nil, nil;
}
case Pipe:
r, w, err := os.Pipe();
if err != nil {
return nil, nil, err;
}
if fd == 0 {
return r, w, nil;
}
return w, r, nil;
}
return nil, nil, os.EINVAL;
}
// Start command running with pipes possibly
// connected to stdin, stdout, stderr.
// TODO(rsc): Should the stdin,stdout,stderr args
// be [3]int instead?
func OpenCmd(argv0 string, argv, envv []string, stdin, stdout, stderr int)
(p *Cmd, err *os.Error)
{
p = new(Cmd);
var fd [3]*os.FD;
if fd[0], p.Stdin, err = modeToFDs(stdin, 0); err != nil {
goto Error;
}
if fd[1], p.Stdout, err = modeToFDs(stdout, 1); err != nil {
goto Error;
}
if stderr == MergeWithStdout {
p.Stderr = p.Stdout;
} else if fd[2], p.Stderr, err = modeToFDs(stderr, 2); err != nil {
goto Error;
}
// Run command.
p.Pid, err = os.ForkExec(argv0, argv, envv, fd);
if err != nil {
goto Error;
}
if fd[0] != os.Stdin {
fd[0].Close();
}
if fd[1] != os.Stdout {
fd[1].Close();
}
if fd[2] != os.Stderr && fd[2] != fd[1] {
fd[2].Close();
}
return p, nil;
Error:
if fd[0] != os.Stdin && fd[0] != nil {
fd[0].Close();
}
if fd[1] != os.Stdout && fd[1] != nil {
fd[1].Close();
}
if fd[2] != os.Stderr && fd[2] != nil && fd[2] != fd[1] {
fd[2].Close();
}
if p.Stdin != nil {
p.Stdin.Close();
}
if p.Stdout != nil {
p.Stdout.Close();
}
if p.Stderr != nil {
p.Stderr.Close();
}
return nil, err;
}
func (p *Cmd) Wait(options uint64) (*os.Waitmsg, *os.Error) {
if p.Pid < 0 {
return nil, os.EINVAL;
}
w, err := os.Wait(p.Pid, options);
if w != nil && (w.Exited() || w.Signaled()) {
p.Pid = -1;
}
return w, err;
}
func (p *Cmd) Close() *os.Error {
if p.Pid >= 0 {
// Loop on interrupt, but
// ignore other errors -- maybe
// caller has already waited for pid.
w, err := p.Wait(0);
for err == os.EINTR {
w, err = p.Wait(0);
}
}
// Close the FDs that are still open.
var err *os.Error;
if p.Stdin != nil && p.Stdin.Fd() >= 0 {
if err1 := p.Stdin.Close(); err1 != nil {
err = err1;
}
}
if p.Stdout != nil && p.Stdout.Fd() >= 0 {
if err1 := p.Stdout.Close(); err1 != nil && err != nil {
err = err1;
}
}
if p.Stderr != nil && p.Stderr != p.Stdout && p.Stderr.Fd() >= 0 {
if err1 := p.Stderr.Close(); err1 != nil && err != nil {
err = err1;
}
}
return err;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package exec
import (
"exec";
"io";
"testing";
)
func TestOpenCmdCat(t *testing.T) {
cmd, err := exec.OpenCmd("/bin/cat", []string("cat"), nil,
exec.Pipe, exec.Pipe, exec.DevNull);
if err != nil {
t.Fatalf("opencmd /bin/cat: %v", err);
}
io.WriteString(cmd.Stdin, "hello, world\n");
cmd.Stdin.Close();
var buf [64]byte;
n, err1 := io.Readn(cmd.Stdout, buf);
if err1 != nil && err1 != io.ErrEOF {
t.Fatalf("reading from /bin/cat: %v", err1);
}
if string(buf[0:n]) != "hello, world\n" {
t.Fatalf("reading from /bin/cat: got %q", buf[0:n]);
}
if err1 = cmd.Close(); err1 != nil {
t.Fatalf("closing /bin/cat: %v", err1);
}
}
func TestOpenCmdEcho(t *testing.T) {
cmd, err := OpenCmd("/bin/echo", []string("echo", "hello", "world"), nil,
exec.DevNull, exec.Pipe, exec.DevNull);
if err != nil {
t.Fatalf("opencmd /bin/echo: %v", err);
}
var buf [64]byte;
n, err1 := io.Readn(cmd.Stdout, buf);
if err1 != nil && err1 != io.ErrEOF {
t.Fatalf("reading from /bin/echo: %v", err1);
}
if string(buf[0:n]) != "hello world\n" {
t.Fatalf("reading from /bin/echo: got %q", buf[0:n]);
}
if err1 = cmd.Close(); err1 != nil {
t.Fatalf("closing /bin/echo: %v", err1);
}
}
......@@ -280,17 +280,26 @@ func (fd *netFD) Accept(sa *syscall.Sockaddr) (nfd *netFD, err *os.Error) {
return nil, os.EINVAL
}
// See ../syscall/exec.go for description of ForkLock.
// It is okay to hold the lock across syscall.Accept
// because we have put fd.fd into non-blocking mode.
syscall.ForkLock.RLock();
var s, e int64;
for {
s, e = syscall.Accept(fd.fd, sa);
if e != syscall.EAGAIN {
break;
}
syscall.ForkLock.RUnlock();
pollserver.WaitRead(fd);
syscall.ForkLock.RLock();
}
if e != 0 {
syscall.ForkLock.RUnlock();
return nil, os.ErrnoToError(e)
}
syscall.CloseOnExec(s);
syscall.ForkLock.RUnlock();
raddr, err1 := sockaddrToHostPort(sa);
if err1 != nil {
......
......@@ -143,10 +143,15 @@ func boolint(b bool) int {
func socket(net, laddr, raddr string, f, p, t int64, la, ra *syscall.Sockaddr)
(fd *netFD, err *os.Error)
{
// See ../syscall/exec.go for description of ForkLock.
syscall.ForkLock.RLock();
s, e := syscall.Socket(f, p, t);
if e != 0 {
syscall.ForkLock.RUnlock();
return nil, os.ErrnoToError(e)
}
syscall.CloseOnExec(s);
syscall.ForkLock.RUnlock();
// Allow reuse of recently-used addresses.
syscall.Setsockopt_int(s, syscall.SOL_SOCKET, syscall.SO_REUSEADDR, 1);
......
......@@ -3,8 +3,8 @@
# license that can be found in the LICENSE file.
# DO NOT EDIT. Automatically generated by gobuild.
# gobuild -m dir_amd64_linux.go env.go error.go file.go stat_amd64_linux.go\
# time.go types.go >Makefile
# gobuild -m dir_${GOARCH}_${GOOS}.go env.go error.go file.go\
# stat_${GOARCH}_${GOOS}.go time.go types.go exec.go >Makefile
O=6
GC=$(O)g
CC=$(O)c -w
......@@ -46,6 +46,7 @@ O3=\
O4=\
dir_$(GOARCH)_$(GOOS).$O\
exec.$O\
os.a: a1 a2 a3 a4
......@@ -62,7 +63,7 @@ a3: $(O3)
rm -f $(O3)
a4: $(O4)
$(AR) grc os.a dir_$(GOARCH)_$(GOOS).$O
$(AR) grc os.a dir_$(GOARCH)_$(GOOS).$O exec.$O
rm -f $(O4)
newpkg: clean
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package os
import (
"os";
"syscall";
)
func ForkExec(argv0 string, argv []string, envv []string, fd []*FD)
(pid int, err *Error)
{
// Create array of integer (system) fds.
intfd := make([]int64, len(fd));
for i, f := range(fd) {
if f == nil {
intfd[i] = -1;
} else {
intfd[i] = f.Fd();
}
}
p, e := syscall.ForkExec(argv0, argv, envv, intfd);
return int(p), ErrnoToError(e);
}
func Exec(argv0 string, argv []string, envv []string) *Error {
e := syscall.Exec(argv0, argv, envv);
return ErrnoToError(e);
}
// TODO(rsc): Should os implement its own syscall.WaitStatus
// wrapper with the methods, or is exposing the underlying one enough?
//
// TODO(rsc): Certainly need to have os.Rusage struct,
// since syscall one might have different field types across
// different OS.
type Waitmsg struct {
Pid int;
syscall.WaitStatus;
Rusage *syscall.Rusage;
}
const (
WNOHANG = syscall.WNOHANG;
WSTOPPED = syscall.WSTOPPED;
WRUSAGE = 1<<60;
)
func Wait(pid int, options uint64) (w *Waitmsg, err *Error) {
var status syscall.WaitStatus;
var rusage *syscall.Rusage;
if options & WRUSAGE != 0 {
rusage = new(syscall.Rusage);
options ^= WRUSAGE;
}
pid1, e := syscall.Wait4(int64(pid), &status, int64(options), rusage);
if e != 0 {
return nil, ErrnoToError(e);
}
w = new(Waitmsg);
w.Pid = pid;
w.WaitStatus = status;
w.Rusage = rusage;
return w, nil;
}
......@@ -4,8 +4,10 @@
package os
import syscall "syscall"
import os "os"
import (
"os";
"syscall";
)
// Auxiliary information if the FD describes a directory
type dirInfo struct { // TODO(r): 6g bug means this can't be private
......@@ -57,7 +59,17 @@ const (
)
func Open(name string, mode int, flags int) (fd *FD, err *Error) {
r, e := syscall.Open(name, int64(mode), int64(flags));
r, e := syscall.Open(name, int64(mode), int64(flags | syscall.O_CLOEXEC));
if e != 0 {
return nil, ErrnoToError(e);
}
// There's a race here with fork/exec, which we are
// content to live with. See ../syscall/exec.go
if syscall.O_CLOEXEC == 0 { // O_CLOEXEC not supported
syscall.CloseOnExec(r);
}
return NewFD(r, name), ErrnoToError(e)
}
......@@ -122,10 +134,18 @@ func (fd *FD) WriteString(s string) (ret int, err *Error) {
func Pipe() (fd1 *FD, fd2 *FD, err *Error) {
var p [2]int64;
// See ../syscall/exec.go for description of lock.
syscall.ForkLock.RLock();
r, e := syscall.Pipe(&p);
if e != 0 {
syscall.ForkLock.RUnlock();
return nil, nil, ErrnoToError(e)
}
syscall.CloseOnExec(p[0]);
syscall.CloseOnExec(p[1]);
syscall.ForkLock.RUnlock();
return NewFD(p[0], "|0"), NewFD(p[1], "|1"), nil
}
......
......@@ -39,3 +39,20 @@ func (m *Mutex) Unlock() {
semrelease(&m.sema);
}
// Stub implementation of r/w locks.
// This satisfies the semantics but
// is not terribly efficient.
// TODO(rsc): Real r/w locks.
type RWMutex struct {
Mutex;
}
func (m *RWMutex) RLock() {
m.Lock();
}
func (m *RWMutex) RUnlock() {
m.Unlock();
}
......@@ -3,9 +3,10 @@
# license that can be found in the LICENSE file.
# DO NOT EDIT. Automatically generated by gobuild.
# gobuild -m errstr_darwin.go file_darwin.go socket_darwin.go\
# syscall_amd64_darwin.go time_amd64_darwin.go types_amd64_darwin.go\
# asm_amd64_darwin.s syscall.go signal_amd64_darwin.go >Makefile
# gobuild -m errstr_${GOOS}.go file_${GOOS}.go socket_${GOOS}.go\
# syscall_${GOARCH}_${GOOS}.go time_${GOARCH}_${GOOS}.go types_${GOARCH}_${GOOS}.go\
# asm_${GOARCH}_${GOOS}.s syscall.go signal_${GOARCH}_${GOOS}.go\
# exec.go >Makefile
O=6
GC=$(O)g
CC=$(O)c -w
......@@ -36,31 +37,46 @@ coverage: packages
O1=\
errstr_$(GOOS).$O\
syscall_$(GOARCH)_$(GOOS).$O\
types_$(GOARCH)_$(GOOS).$O\
asm_$(GOARCH)_$(GOOS).$O\
syscall.$O\
signal_$(GOARCH)_$(GOOS).$O\
O2=\
types_$(GOARCH)_$(GOOS).$O\
O3=\
file_$(GOOS).$O\
socket_$(GOOS).$O\
time_$(GOARCH)_$(GOOS).$O\
syscall.a: a1 a2
O4=\
exec.$O\
syscall.a: a1 a2 a3 a4
a1: $(O1)
$(AR) grc syscall.a errstr_$(GOOS).$O syscall_$(GOARCH)_$(GOOS).$O types_$(GOARCH)_$(GOOS).$O asm_$(GOARCH)_$(GOOS).$O syscall.$O signal_$(GOARCH)_$(GOOS).$O
$(AR) grc syscall.a errstr_$(GOOS).$O syscall_$(GOARCH)_$(GOOS).$O asm_$(GOARCH)_$(GOOS).$O syscall.$O signal_$(GOARCH)_$(GOOS).$O
rm -f $(O1)
a2: $(O2)
$(AR) grc syscall.a file_$(GOOS).$O socket_$(GOOS).$O time_$(GOARCH)_$(GOOS).$O
$(AR) grc syscall.a types_$(GOARCH)_$(GOOS).$O
rm -f $(O2)
a3: $(O3)
$(AR) grc syscall.a file_$(GOOS).$O socket_$(GOOS).$O time_$(GOARCH)_$(GOOS).$O
rm -f $(O3)
a4: $(O4)
$(AR) grc syscall.a exec.$O
rm -f $(O4)
newpkg: clean
$(AR) grc syscall.a
$(O1): newpkg
$(O2): a1
$(O3): a2
$(O4): a3
nuke: clean
rm -f $(GOROOT)/pkg/syscall.a
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Fork, exec, wait, etc.
package syscall
import (
"sync";
"syscall";
"unsafe";
)
// Lock synchronizing creation of new file descriptors with fork.
//
// We want the child in a fork/exec sequence to inherit only the
// file descriptors we intend. To do that, we mark all file
// descriptors close-on-exec and then, in the child, explicitly
// unmark the ones we want the exec'ed program to keep.
// Unix doesn't make this easy: there is, in general, no way to
// allocate a new file descriptor close-on-exec. Instead you
// have to allocate the descriptor and then mark it close-on-exec.
// If a fork happens between those two events, the child's exec
// will inherit an unwanted file descriptor.
//
// This lock solves that race: the create new fd/mark close-on-exec
// operation is done holding ForkLock for reading, and the fork itself
// is done holding ForkLock for writing. At least, that's the idea.
// There are some complications.
//
// Some system calls that create new file descriptors can block
// for arbitrarily long times: open on a hung NFS server or named
// pipe, accept on a socket, and so on. We can't reasonably grab
// the lock across those operations.
//
// It is worse to inherit some file descriptors than others.
// If a non-malicious child accidentally inherits an open ordinary file,
// that's not a big deal. On the other hand, if a long-lived child
// accidentally inherits the write end of a pipe, then the reader
// of that pipe will not see EOF until that child exits, potentially
// causing the parent program to hang. This is a common problem
// in threaded C programs that use popen.
//
// Luckily, the file descriptors that are most important not to
// inherit are not the ones that can take an arbitrarily long time
// to create: pipe returns instantly, and the net package uses
// non-blocking I/O to accept on a listening socket.
// The rules for which file descriptor-creating operations use the
// ForkLock are as follows:
//
// 1) Pipe. Does not block. Use the ForkLock.
// 2) Socket. Does not block. Use the ForkLock.
// 3) Accept. If using non-blocking mode, use the ForkLock.
// Otherwise, live with the race.
// 4) Open. Can block. Use O_CLOEXEC if available (Linux).
// Otherwise, live with the race.
// 5) Dup. Does not block. Use the ForkLock.
// On Linux, could use fcntl F_DUPFD_CLOEXEC
// instead of the ForkLock, but only for dup(fd, -1).
var ForkLock sync.RWMutex
func CloseOnExec(fd int64) {
Fcntl(fd, F_SETFD, FD_CLOEXEC);
}
// Convert array of string to array
// of NUL-terminated byte pointer.
func StringArrayPtr(ss []string) []*byte {
bb := make([]*byte, len(ss)+1);
for i := 0; i < len(ss); i++ {
bb[i] = StringBytePtr(ss[i]);
}
bb[len(ss)] = nil;
return bb;
}
func Wait4(pid int64, wstatus *WaitStatus, options int64, rusage *Rusage)
(wpid, err int64)
{
var s WaitStatus;
r1, r2, err1 := Syscall6(SYS_WAIT4,
pid,
int64(uintptr(unsafe.Pointer(&s))),
options,
int64(uintptr(unsafe.Pointer(rusage))), 0, 0);
if wstatus != nil {
*wstatus = s;
}
return r1, err1;
}
// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
// If a dup or exec fails, write the errno int64 to pipe.
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
// In the child, this function must not acquire any locks, because
// they might have been locked at the time of the fork. This means
// no rescheduling, no malloc calls, and no new stack segments.
// The calls to RawSyscall are okay because they are assembly
// functions that do not grow the stack.
func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, fd []int64, pipe int64)
(pid int64, err int64)
{
// Declare all variables at top in case any
// declarations require heap allocation (e.g., err1).
var r1, r2, err1 int64;
var nextfd int64;
var i int;
darwin := OS == "darwin";
// About to call fork.
// No more allocation or calls of non-assembly functions.
r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0);
if err1 != 0 {
return 0, err1
}
// On Darwin:
// r1 = child pid in both parent and child.
// r2 = 0 in parent, 1 in child.
// Convert to normal Unix r1 = 0 in child.
if darwin && r2 == 1 {
r1 = 0;
}
if r1 != 0 {
// parent; return PID
return r1, 0
}
// Fork succeeded, now in child.
// Pass 1: look for fd[i] < i and move those up above len(fd)
// so that pass 2 won't stomp on an fd it needs later.
nextfd = int64(len(fd));
if pipe < nextfd {
r1, r2, err = RawSyscall(SYS_DUP2, pipe, nextfd, 0);
if err != 0 {
goto childerror;
}
RawSyscall(SYS_FCNTL, nextfd, F_SETFD, FD_CLOEXEC);
pipe = nextfd;
nextfd++;
}
for i = 0; i < len(fd); i++ {
if fd[i] >= 0 && fd[i] < int64(i) {
r1, r2, err = RawSyscall(SYS_DUP2, fd[i], nextfd, 0);
if err != 0 {
goto childerror;
}
RawSyscall(SYS_FCNTL, nextfd, F_SETFD, FD_CLOEXEC);
fd[i] = nextfd;
nextfd++;
if nextfd == pipe { // don't stomp on pipe
nextfd++;
}
}
}
// Pass 2: dup fd[i] down onto i.
for i = 0; i < len(fd); i++ {
if fd[i] == -1 {
RawSyscall(SYS_CLOSE, int64(i), 0, 0);
continue;
}
if fd[i] == int64(i) {
// dup2(i, i) won't clear close-on-exec flag on Linux,
// probably not elsewhere either.
r1, r2, err = RawSyscall(SYS_FCNTL, fd[i], F_SETFD, 0);
if err != 0 {
goto childerror;
}
continue;
}
// The new fd is created NOT close-on-exec,
// which is exactly what we want.
r1, r2, err = RawSyscall(SYS_DUP2, fd[i], int64(i), 0);
if err != 0 {
goto childerror;
}
}
// By convention, we don't close-on-exec the fds we are
// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
// Programs that know they inherit fds >= 3 will need
// to set them close-on-exec.
for i = len(fd); i < 3; i++ {
RawSyscall(SYS_CLOSE, int64(i), 0, 0);
}
// Time to exec.
r1, r2, err1 = RawSyscall(SYS_EXECVE,
int64(uintptr(unsafe.Pointer(argv0))),
int64(uintptr(unsafe.Pointer(&argv[0]))),
int64(uintptr(unsafe.Pointer(&envv[0]))));
childerror:
// send error code on pipe
RawSyscall(SYS_WRITE, pipe, int64(uintptr(unsafe.Pointer(&err1))), 8);
for {
RawSyscall(SYS_EXIT, 253, 0, 0);
}
// Calling panic is not actually safe,
// but the for loop above won't break
// and this shuts up the compiler.
panic("unreached");
}
// Combination of fork and exec, careful to be thread safe.
func ForkExec(argv0 string, argv []string, envv []string, fd []int64)
(pid int64, err int64)
{
var p [2]int64;
var r1 int64;
var n, err1 int64;
var wstatus WaitStatus;
p[0] = -1;
p[1] = -1;
// Convert args to C form.
argv0p := StringBytePtr(argv0);
argvp := StringArrayPtr(argv);
envvp := StringArrayPtr(envv);
// Acquire the fork lock so that no other threads
// create new fds that are not yet close-on-exec
// before we fork.
ForkLock.Lock();
// Allocate child status pipe close on exec.
if r1, err = Pipe(&p); err != 0 {
goto error;
}
if r1, err = Fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 {
goto error;
}
if r1, err = Fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 {
goto error;
}
// Kick off child.
pid, err = forkAndExecInChild(argv0p, argvp, envvp, fd, p[1]);
if err != 0 {
error:
if p[0] >= 0 {
Close(p[0]);
Close(p[1]);
}
ForkLock.Unlock();
return 0, err
}
ForkLock.Unlock();
// Read child error status from pipe.
Close(p[1]);
n, r1, err = Syscall(SYS_READ, p[0], int64(uintptr(unsafe.Pointer(&err1))), 8);
Close(p[0]);
if err != 0 || n != 0 {
if n == 8 {
err = err1;
}
if err == 0 {
err = EPIPE;
}
// Child failed; wait for it to exit, to make sure
// the zombies don't accumulate.
pid1, err1 := Wait4(pid, &wstatus, 0, nil);
for err1 == EINTR {
pid1, err1 = Wait4(pid, &wstatus, 0, nil);
}
return 0, err
}
// Read got EOF, so pipe closed on exec, so exec succeeded.
return pid, 0
}
// Ordinary exec.
func Exec(argv0 string, argv []string, envv []string) (err int64) {
r1, r2, err1 := RawSyscall(SYS_EXECVE,
int64(uintptr(unsafe.Pointer(StringBytePtr(argv0)))),
int64(uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0]))),
int64(uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0]))));
return err1;
}
......@@ -7,6 +7,9 @@
package syscall
import "syscall"
const OS = "darwin"
// Time
......@@ -57,6 +60,7 @@ const (
O_NDELAY = O_NONBLOCK;
O_SYNC = 0x80;
O_TRUNC = 0x400;
O_CLOEXEC = 0; // not supported
F_GETFD = 1;
F_SETFD = 2;
......@@ -239,3 +243,88 @@ type Kevent_t struct {
Udata int64;
}
// Wait status.
// See /usr/include/bits/waitstatus.h
const (
WNOHANG = 1;
WUNTRACED = 2;
WEXITED = 4;
WSTOPPED = 8;
WCONTINUED = 0x10;
WNOWAIT = 0x20;
)
type WaitStatus uint32;
// TODO(rsc): should be method on WaitStatus,
// not *WaitStatus, but causes problems when
// embedding in a *Waitmsg in package os.
// Need to find the 6g bug.
// Wait status is 7 bits at bottom, either 0 (exited),
// 0x7F (stopped), or a signal number that caused an exit.
// The 0x80 bit is whether there was a core dump.
// An extra number (exit code, signal causing a stop)
// is in the high bits.
const (
mask = 0x7F;
core = 0x80;
shift = 8;
exited = 0;
stopped = 0x7F;
)
func (wp *WaitStatus) Exited() bool {
w := *wp; // TODO(rsc): no pointer
return w&mask == exited;
}
func (wp *WaitStatus) ExitStatus() int {
w := *wp; // TODO(rsc): no pointer
if w&mask != exited {
return -1;
}
return int(w >> shift);
}
func (wp *WaitStatus) Signaled() bool {
w := *wp; // TODO(rsc): no pointer
return w&mask != stopped && w&mask != 0;
}
func (wp *WaitStatus) Signal() int {
w := *wp; // TODO(rsc): no pointer
sig := int(w & mask);
if sig == stopped || sig == 0 {
return -1;
}
return sig;
}
func (wp *WaitStatus) CoreDump() bool {
w := *wp; // TODO(rsc): no pointer
return w.Signaled() && w&core != 0;
}
func (wp *WaitStatus) Stopped() bool {
w := *wp; // TODO(rsc): no pointer
return w&mask == stopped && w>>shift != SIGSTOP;
}
func (wp *WaitStatus) Continued() bool {
w := *wp; // TODO(rsc): no pointer
return w&mask == stopped && w>>shift == SIGSTOP;
}
func (wp *WaitStatus) StopSignal() int {
w := *wp; // TODO(rsc): no pointer
if !w.Stopped() {
return -1;
}
return int(w >> shift) & 0xFF;
}
......@@ -7,6 +7,9 @@
package syscall
import "syscall"
const OS = "linux"
// Time
......@@ -57,6 +60,7 @@ const (
O_NDELAY = O_NONBLOCK;
O_SYNC = 0x1000;
O_TRUNC = 0x200;
O_CLOEXEC = 0x80000;
F_GETFD = 1;
F_SETFD = 2;
......@@ -218,3 +222,98 @@ type EpollEvent struct {
Fd int32;
Pad int32;
}
// Wait status.
// See /usr/include/bits/waitstatus.h
const (
WNOHANG = 1;
WUNTRACED = 2;
WSTOPPED = 2; // same as WUNTRACED
WEXITED = 4;
WCONTINUED = 8;
WNOWAIT = 0x01000000;
WNOTHREAD = 0x20000000;
WALL = 0x40000000;
WCLONE = 0x80000000;
)
type WaitStatus uint32;
// TODO(rsc): should be method on WaitStatus,
// not *WaitStatus, but causes problems when
// embedding in a *Waitmsg in package os.
// Need to find the 6g bug.
// Wait status is 7 bits at bottom, either 0 (exited),
// 0x7F (stopped), or a signal number that caused an exit.
// The 0x80 bit is whether there was a core dump.
// An extra number (exit code, signal causing a stop)
// is in the high bits. At least that's the idea.
// There are various irregularities. For example, the
// "continued" status is 0xFFFF, distinguishing itself
// from stopped via the core dump bit.
const (
mask = 0x7F;
core = 0x80;
exited = 0x00;
stopped = 0x7F;
shift = 8;
// types_amd64_darwin.go refers to SIGSTOP.
// do the same here so the dependencies are
// the same on Linux as on Darwin.
__unused = SIGSTOP;
)
func (wp *WaitStatus) Exited() bool {
w := *wp; // TODO(rsc): no pointer
return w&mask == exited;
}
func (wp *WaitStatus) Signaled() bool {
w := *wp; // TODO(rsc): no pointer
return w&mask != stopped && w&mask != exited;
}
func (wp *WaitStatus) Stopped() bool {
w := *wp; // TODO(rsc): no pointer
return w&0xFF == stopped;
}
func (wp *WaitStatus) Continued() bool {
w := *wp; // TODO(rsc): no pointer
return w == 0xFFFF;
}
func (wp *WaitStatus) CoreDump() bool {
w := *wp; // TODO(rsc): no pointer
return w.Signaled() && w&core != 0;
}
func (wp *WaitStatus) ExitStatus() int {
w := *wp; // TODO(rsc): no pointer
if !w.Exited() {
return -1;
}
return int(w >> shift) & 0xFF;
}
func (wp *WaitStatus) Signal() int {
w := *wp; // TODO(rsc): no pointer
if !w.Signaled() {
return -1;
}
return int(w & mask);
}
func (wp *WaitStatus) StopSignal() int {
w := *wp; // TODO(rsc): no pointer
if !w.Stopped() {
return -1;
}
return int(w >> shift) & 0xFF;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment