Commit 9ce38f57 authored by Robert Griesemer's avatar Robert Griesemer

math: don't run huge argument tests on s390x

The s390x implementations for Sin/Cos/SinCos/Tan use assembly
routines which don't reduce arguments accurately enough for
huge inputs.

Fixes #29221.

Change-Id: I340f576899d67bb52a553c3ab22e6464172c936d
Reviewed-on: https://go-review.googlesource.com/c/154119
Run-TryBot: Robert Griesemer <gri@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: 's avatarBrad Fitzpatrick <bradfitz@golang.org>
parent 35edc960
......@@ -176,47 +176,6 @@ var cosLarge = []float64{
-7.3924135157173099849e-01,
}
// Inputs to test trig_reduce
var trigHuge = []float64{
1 << 120,
1 << 240,
1 << 480,
1234567891234567 << 180,
1234567891234567 << 300,
MaxFloat64,
}
// Results for trigHuge[i] calculated with https://github.com/robpike/ivy
// using 4096 bits of working precision. Values requiring less than
// 102 decimal digits (1 << 120, 1 << 240, 1 << 480, 1234567891234567 << 180)
// were confirmed via https://keisan.casio.com/
var cosHuge = []float64{
-0.92587902285483787,
0.93601042593353793,
-0.28282777640193788,
-0.14616431394103619,
-0.79456058210671406,
-0.99998768942655994,
}
var sinHuge = []float64{
0.37782010936075202,
-0.35197227524865778,
0.95917070894368716,
0.98926032637023618,
-0.60718488235646949,
0.00496195478918406,
}
var tanHuge = []float64{
-0.40806638884180424,
-0.37603456702698076,
-3.39135965054779932,
-6.76813854009065030,
0.76417695016604922,
-0.00496201587444489,
}
var cosh = []float64{
7.2668796942212842775517446e+01,
1.1479413465659254502011135e+03,
......@@ -3103,49 +3062,6 @@ func TestTrigReduce(t *testing.T) {
}
}
// Check that trig values of huge angles return accurate results.
// This confirms that argument reduction works for very large values
// up to MaxFloat64.
func TestHugeCos(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1 := cosHuge[i]
f2 := Cos(trigHuge[i])
if !close(f1, f2) {
t.Errorf("Cos(%g) = %g, want %g", trigHuge[i], f2, f1)
}
}
}
func TestHugeSin(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1 := sinHuge[i]
f2 := Sin(trigHuge[i])
if !close(f1, f2) {
t.Errorf("Sin(%g) = %g, want %g", trigHuge[i], f2, f1)
}
}
}
func TestHugeSinCos(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1, g1 := sinHuge[i], cosHuge[i]
f2, g2 := Sincos(trigHuge[i])
if !close(f1, f2) || !close(g1, g2) {
t.Errorf("Sincos(%g) = %g, %g, want %g, %g", trigHuge[i], f2, g2, f1, g1)
}
}
}
func TestHugeTan(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1 := tanHuge[i]
f2 := Tan(trigHuge[i])
if !close(f1, f2) {
t.Errorf("Tan(%g) = %g, want %g", trigHuge[i], f2, f1)
}
}
}
// Check that math constants are accepted by compiler
// and have right value (assumes strconv.ParseFloat works).
// https://golang.org/issue/201
......
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Disabled for s390x because it uses assembly routines that are not
// accurate for huge arguments.
// +build !s390x
package math_test
import (
. "math"
"testing"
)
// Inputs to test trig_reduce
var trigHuge = []float64{
1 << 120,
1 << 240,
1 << 480,
1234567891234567 << 180,
1234567891234567 << 300,
MaxFloat64,
}
// Results for trigHuge[i] calculated with https://github.com/robpike/ivy
// using 4096 bits of working precision. Values requiring less than
// 102 decimal digits (1 << 120, 1 << 240, 1 << 480, 1234567891234567 << 180)
// were confirmed via https://keisan.casio.com/
var cosHuge = []float64{
-0.92587902285483787,
0.93601042593353793,
-0.28282777640193788,
-0.14616431394103619,
-0.79456058210671406,
-0.99998768942655994,
}
var sinHuge = []float64{
0.37782010936075202,
-0.35197227524865778,
0.95917070894368716,
0.98926032637023618,
-0.60718488235646949,
0.00496195478918406,
}
var tanHuge = []float64{
-0.40806638884180424,
-0.37603456702698076,
-3.39135965054779932,
-6.76813854009065030,
0.76417695016604922,
-0.00496201587444489,
}
// Check that trig values of huge angles return accurate results.
// This confirms that argument reduction works for very large values
// up to MaxFloat64.
func TestHugeCos(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1 := cosHuge[i]
f2 := Cos(trigHuge[i])
if !close(f1, f2) {
t.Errorf("Cos(%g) = %g, want %g", trigHuge[i], f2, f1)
}
}
}
func TestHugeSin(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1 := sinHuge[i]
f2 := Sin(trigHuge[i])
if !close(f1, f2) {
t.Errorf("Sin(%g) = %g, want %g", trigHuge[i], f2, f1)
}
}
}
func TestHugeSinCos(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1, g1 := sinHuge[i], cosHuge[i]
f2, g2 := Sincos(trigHuge[i])
if !close(f1, f2) || !close(g1, g2) {
t.Errorf("Sincos(%g) = %g, %g, want %g, %g", trigHuge[i], f2, g2, f1, g1)
}
}
}
func TestHugeTan(t *testing.T) {
for i := 0; i < len(trigHuge); i++ {
f1 := tanHuge[i]
f2 := Tan(trigHuge[i])
if !close(f1, f2) {
t.Errorf("Tan(%g) = %g, want %g", trigHuge[i], f2, f1)
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment