Commit bdea1d58 authored by Alexandru Moșoi's avatar Alexandru Moșoi Committed by Alexandru Moșoi

[dev.ssa] cmd/compile/internal/ssa: remove proven redundant controls.

* It does very simple bounds checking elimination. E.g.
removes the second check in for i := range a { a[i]++; a[i++]; }
* Improves on the following redundant expression:
return a6 || (a6 || (a6 || a4)) || (a6 || (a4 || a6 || (false || a6)))
* Linear in the number of block edges.

I patched in CL 12960 that does bounds, nil and constant propagation
to make sure this CL is not just redundant. Size of pkg/tool/linux_amd64/*
(excluding compile which is affected by this change):

With IsInBounds and IsSliceInBounds
-this -12960 92285080
+this -12960 91947416
-this +12960 91978976
+this +12960 91923088

Gain is ~110% of 12960.

Without IsInBounds and IsSliceInBounds (older run)
-this -12960 95515512
+this -12960 95492536
-this +12960 95216920
+this +12960 95204440

Shaves 22k on its own.

* Can we handle IsInBounds better with this? In
for i := range a { a[i]++; } the bounds checking at a[i]
is not eliminated.

Change-Id: I98957427399145fb33693173fd4d5a8d71c7cc20
Reviewed-on: https://go-review.googlesource.com/19710Reviewed-by: 's avatarDavid Chase <drchase@google.com>
Reviewed-by: 's avatarKeith Randall <khr@golang.org>
Run-TryBot: Alexandru Moșoi <alexandru@mosoi.ro>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent 4e95dfed
......@@ -165,6 +165,7 @@ var passes = [...]pass{
{name: "opt deadcode", fn: deadcode}, // remove any blocks orphaned during opt
{name: "generic cse", fn: cse},
{name: "nilcheckelim", fn: nilcheckelim},
{name: "prove", fn: prove},
{name: "generic deadcode", fn: deadcode},
{name: "fuse", fn: fuse},
{name: "dse", fn: dse},
......@@ -193,6 +194,10 @@ type constraint struct {
}
var passOrder = [...]constraint{
// prove reliese on common-subexpression elimination for maximum benefits.
{"generic cse", "prove"},
// deadcode after prove to eliminate all new dead blocks.
{"prove", "generic deadcode"},
// common-subexpression before dead-store elim, so that we recognize
// when two address expressions are the same.
{"generic cse", "dse"},
......
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// rangeMask represents the possible relations between a pair of variables.
type rangeMask uint
const (
lt rangeMask = 1 << iota
eq
gt
)
// typeMask represents the universe of a variable pair in which
// a set of relations is known.
// For example, information learned for unsigned pairs cannot
// be transfered to signed pairs because the same bit representation
// can mean something else.
type typeMask uint
const (
signed typeMask = 1 << iota
unsigned
pointer
)
type typeRange struct {
t typeMask
r rangeMask
}
type control struct {
tm typeMask
a0, a1 ID
}
var (
reverseBits = [...]rangeMask{0, 4, 2, 6, 1, 5, 3, 7}
// maps what we learn when the positive branch is taken.
// For example:
// OpLess8: {signed, lt},
// v1 = (OpLess8 v2 v3).
// If v1 branch is taken than we learn that the rangeMaks
// can be at most lt.
typeRangeTable = map[Op]typeRange{
OpEq8: {signed | unsigned, eq},
OpEq16: {signed | unsigned, eq},
OpEq32: {signed | unsigned, eq},
OpEq64: {signed | unsigned, eq},
OpEqPtr: {pointer, eq},
OpNeq8: {signed | unsigned, lt | gt},
OpNeq16: {signed | unsigned, lt | gt},
OpNeq32: {signed | unsigned, lt | gt},
OpNeq64: {signed | unsigned, lt | gt},
OpNeqPtr: {pointer, lt | gt},
OpLess8: {signed, lt},
OpLess8U: {unsigned, lt},
OpLess16: {signed, lt},
OpLess16U: {unsigned, lt},
OpLess32: {signed, lt},
OpLess32U: {unsigned, lt},
OpLess64: {signed, lt},
OpLess64U: {unsigned, lt},
OpLeq8: {signed, lt | eq},
OpLeq8U: {unsigned, lt | eq},
OpLeq16: {signed, lt | eq},
OpLeq16U: {unsigned, lt | eq},
OpLeq32: {signed, lt | eq},
OpLeq32U: {unsigned, lt | eq},
OpLeq64: {signed, lt | eq},
OpLeq64U: {unsigned, lt | eq},
OpGeq8: {signed, eq | gt},
OpGeq8U: {unsigned, eq | gt},
OpGeq16: {signed, eq | gt},
OpGeq16U: {unsigned, eq | gt},
OpGeq32: {signed, eq | gt},
OpGeq32U: {unsigned, eq | gt},
OpGeq64: {signed, eq | gt},
OpGeq64U: {unsigned, eq | gt},
OpGreater8: {signed, gt},
OpGreater8U: {unsigned, gt},
OpGreater16: {signed, gt},
OpGreater16U: {unsigned, gt},
OpGreater32: {signed, gt},
OpGreater32U: {unsigned, gt},
OpGreater64: {signed, gt},
OpGreater64U: {unsigned, gt},
// TODO: OpIsInBounds actually test 0 <= a < b. This means
// that the positive branch learns signed/LT and unsigned/LT
// but the negative branch only learns unsigned/GE.
OpIsInBounds: {unsigned, lt},
OpIsSliceInBounds: {unsigned, lt | eq},
}
)
// prove removes redundant BlockIf controls that can be inferred in a straight line.
//
// By far, the most common redundant control are generated by bounds checking.
// For example for the code:
//
// a[i] = 4
// foo(a[i])
//
// The compiler will generate the following code:
//
// if i >= len(a) {
// panic("not in bounds")
// }
// a[i] = 4
// if i >= len(a) {
// panic("not in bounds")
// }
// foo(a[i])
//
// The second comparison i >= len(a) is clearly redundant because if the
// else branch of the first comparison is executed, we already know that i < len(a).
// The code for the second panic can be removed.
func prove(f *Func) {
idom := dominators(f)
sdom := newSparseTree(f, idom)
domTree := make([][]*Block, f.NumBlocks())
// Create a block ID -> [dominees] mapping
for _, b := range f.Blocks {
if dom := idom[b.ID]; dom != nil {
domTree[dom.ID] = append(domTree[dom.ID], b)
}
}
// current node state
type walkState int
const (
descend walkState = iota
simplify
)
// work maintains the DFS stack.
type bp struct {
block *Block // current handled block
state walkState // what's to do
saved []typeRange // save previous map entries modified by node
}
work := make([]bp, 0, 256)
work = append(work, bp{
block: f.Entry,
state: descend,
})
// mask keep tracks of restrictions for each pair of values in
// the dominators for the current node.
// Invariant: a0.ID <= a1.ID
// For example {unsigned, a0, a1} -> eq|gt means that from
// predecessors we know that a0 must be greater or equal to
// a1.
mask := make(map[control]rangeMask)
// DFS on the dominator tree.
for len(work) > 0 {
node := work[len(work)-1]
work = work[:len(work)-1]
switch node.state {
case descend:
parent := idom[node.block.ID]
tr := getRestrict(sdom, parent, node.block)
saved := updateRestrictions(mask, parent, tr)
work = append(work, bp{
block: node.block,
state: simplify,
saved: saved,
})
for _, s := range domTree[node.block.ID] {
work = append(work, bp{
block: s,
state: descend,
})
}
case simplify:
simplifyBlock(mask, node.block)
restoreRestrictions(mask, idom[node.block.ID], node.saved)
}
}
}
// getRestrict returns the range restrictions added by p
// when reaching b. p is the immediate dominator or b.
func getRestrict(sdom sparseTree, p *Block, b *Block) typeRange {
if p == nil || p.Kind != BlockIf {
return typeRange{}
}
tr, has := typeRangeTable[p.Control.Op]
if !has {
return typeRange{}
}
// If p and p.Succs[0] are dominators it means that every path
// from entry to b passes through p and p.Succs[0]. We care that
// no path from entry to b passes through p.Succs[1]. If p.Succs[0]
// has one predecessor then (apart from the degenerate case),
// there is no path from entry that can reach b through p.Succs[1].
// TODO: how about p->yes->b->yes, i.e. a loop in yes.
if sdom.isAncestorEq(p.Succs[0], b) && len(p.Succs[0].Preds) == 1 {
return tr
} else if sdom.isAncestorEq(p.Succs[1], b) && len(p.Succs[1].Preds) == 1 {
tr.r = (lt | eq | gt) ^ tr.r
return tr
}
return typeRange{}
}
// updateRestrictions updates restrictions from the previous block (p) based on tr.
// normally tr was calculated with getRestrict.
func updateRestrictions(mask map[control]rangeMask, p *Block, tr typeRange) []typeRange {
if tr.t == 0 {
return nil
}
// p modifies the restrictions for (a0, a1).
// save and return the previous state.
a0 := p.Control.Args[0]
a1 := p.Control.Args[1]
if a0.ID > a1.ID {
tr.r = reverseBits[tr.r]
a0, a1 = a1, a0
}
saved := make([]typeRange, 0, 2)
for t := typeMask(1); t <= tr.t; t <<= 1 {
if t&tr.t == 0 {
continue
}
i := control{t, a0.ID, a1.ID}
oldRange, ok := mask[i]
if !ok {
if a1 != a0 {
oldRange = lt | eq | gt
} else { // sometimes happens after cse
oldRange = eq
}
}
// if i was not already in the map we save the full range
// so that when we restore it we properly keep track of it.
saved = append(saved, typeRange{t, oldRange})
// mask[i] contains the possible relations between a0 and a1.
// When we branched from parent we learned that the possible
// relations cannot be more than tr.r. We compute the new set of
// relations as the intersection betwee the old and the new set.
mask[i] = oldRange & tr.r
}
return saved
}
func restoreRestrictions(mask map[control]rangeMask, p *Block, saved []typeRange) {
if p == nil || p.Kind != BlockIf || len(saved) == 0 {
return
}
a0 := p.Control.Args[0].ID
a1 := p.Control.Args[1].ID
if a0 > a1 {
a0, a1 = a1, a0
}
for _, tr := range saved {
i := control{tr.t, a0, a1}
if tr.r != lt|eq|gt {
mask[i] = tr.r
} else {
delete(mask, i)
}
}
}
// simplifyBlock simplifies block known the restrictions in mask.
func simplifyBlock(mask map[control]rangeMask, b *Block) {
if b.Kind != BlockIf {
return
}
tr, has := typeRangeTable[b.Control.Op]
if !has {
return
}
succ := -1
a0 := b.Control.Args[0].ID
a1 := b.Control.Args[1].ID
if a0 > a1 {
tr.r = reverseBits[tr.r]
a0, a1 = a1, a0
}
for t := typeMask(1); t <= tr.t; t <<= 1 {
if t&tr.t == 0 {
continue
}
// tr.r represents in which case the positive branch is taken.
// m.r represents which cases are possible because of previous relations.
// If the set of possible relations m.r is included in the set of relations
// need to take the positive branch (or negative) then that branch will
// always be taken.
// For shortcut, if m.r == 0 then this block is dead code.
i := control{t, a0, a1}
m := mask[i]
if m != 0 && tr.r&m == m {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(int(b.Line), "Proved %s", b.Control.Op)
}
b.Logf("proved positive branch of %s, block %s in %s\n", b.Control, b, b.Func.Name)
succ = 0
break
}
if m != 0 && ((lt|eq|gt)^tr.r)&m == m {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(int(b.Line), "Disproved %s", b.Control.Op)
}
b.Logf("proved negative branch of %s, block %s in %s\n", b.Control, b, b.Func.Name)
succ = 1
break
}
}
if succ == -1 {
// HACK: If the first argument of IsInBounds or IsSliceInBounds
// is a constant and we already know that constant is smaller (or equal)
// to the upper bound than this is proven. Most useful in cases such as:
// if len(a) <= 1 { return }
// do something with a[1]
c := b.Control
if (c.Op == OpIsInBounds || c.Op == OpIsSliceInBounds) &&
c.Args[0].Op == OpConst64 && c.Args[0].AuxInt >= 0 {
m := mask[control{signed, a0, a1}]
if m != 0 && tr.r&m == m {
if b.Func.pass.debug > 0 {
b.Func.Config.Warnl(int(b.Line), "Proved constant %s", c.Op)
}
succ = 0
}
}
}
if succ != -1 {
b.Kind = BlockFirst
b.Control = nil
b.Succs[0], b.Succs[1] = b.Succs[succ], b.Succs[1-succ]
}
}
// +build amd64
// errorcheck -0 -d=ssa/prove/debug=3
package main
func f0(a []int) int {
a[0] = 1
a[0] = 1 // ERROR "Proved IsInBounds$"
a[6] = 1
a[6] = 1 // ERROR "Proved IsInBounds$"
a[5] = 1
a[5] = 1 // ERROR "Proved IsInBounds$"
return 13
}
func f1(a []int) int {
if len(a) <= 5 {
return 18
}
a[0] = 1
a[0] = 1 // ERROR "Proved IsInBounds$"
a[6] = 1
a[6] = 1 // ERROR "Proved IsInBounds$"
a[5] = 1 // ERROR "Proved constant IsInBounds$"
a[5] = 1 // ERROR "Proved IsInBounds$"
return 26
}
func f2(a []int) int {
for i := range a {
a[i] = i
a[i] = i // ERROR "Proved IsInBounds$"
}
return 34
}
func f3(a []uint) int {
for i := uint(0); i < uint(len(a)); i++ {
a[i] = i // ERROR "Proved IsInBounds$"
}
return 41
}
func f4a(a, b, c int) int {
if a < b {
if a == b { // ERROR "Disproved Eq64$"
return 47
}
if a > b { // ERROR "Disproved Greater64$"
return 50
}
if a < b { // ERROR "Proved Less64$"
return 53
}
if a == b { // ERROR "Disproved Eq64$"
return 56
}
if a > b {
return 59
}
return 61
}
return 63
}
func f4b(a, b, c int) int {
if a <= b {
if a >= b {
if a == b { // ERROR "Proved Eq64$"
return 70
}
return 75
}
return 77
}
return 79
}
func f4c(a, b, c int) int {
if a <= b {
if a >= b {
if a != b { // ERROR "Disproved Neq64$"
return 73
}
return 75
}
return 77
}
return 79
}
func f4d(a, b, c int) int {
if a < b {
if a < c {
if a < b { // ERROR "Proved Less64$"
if a < c { // ERROR "Proved Less64$"
return 87
}
return 89
}
return 91
}
return 93
}
return 95
}
func f4e(a, b, c int) int {
if a < b {
if b > a { // ERROR "Proved Greater64$"
return 101
}
return 103
}
return 105
}
func f4f(a, b, c int) int {
if a <= b {
if b > a {
if b == a { // ERROR "Disproved Eq64$"
return 112
}
return 114
}
if b >= a { // ERROR "Proved Geq64$"
if b == a { // ERROR "Proved Eq64$"
return 118
}
return 120
}
return 122
}
return 124
}
func f5(a, b uint) int {
if a == b {
if a <= b { // ERROR "Proved Leq64U$"
return 130
}
return 132
}
return 134
}
// These comparisons are compile time constants.
func f6a(a uint8) int {
if a < a { // ERROR "Disproved Less8U$"
return 140
}
return 151
}
func f6b(a uint8) int {
if a < a { // ERROR "Disproved Less8U$"
return 140
}
return 151
}
func f6x(a uint8) int {
if a > a { // ERROR "Disproved Greater8U$"
return 143
}
return 151
}
func f6d(a uint8) int {
if a <= a { // ERROR "Proved Leq8U$"
return 146
}
return 151
}
func f6e(a uint8) int {
if a >= a { // ERROR "Proved Geq8U$"
return 149
}
return 151
}
func f7(a []int, b int) int {
if b < len(a) {
a[b] = 3
if b < len(a) { // ERROR "Proved Less64$"
a[b] = 5 // ERROR "Proved IsInBounds$"
}
}
return 161
}
func f8(a, b uint) int {
if a == b {
return 166
}
if a > b {
return 169
}
if a < b { // ERROR "Proved Less64U$"
return 172
}
return 174
}
func main() {
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment