Commit d491e550 authored by Austin Clements's avatar Austin Clements

[dev.garbage] runtime: separate spans of noscan objects

Currently, we mix objects with pointers and objects without pointers
("noscan" objects) together in memory. As a result, for every object
we grey, we have to check that object's heap bits to find out if it's
noscan, which adds to the per-object cost of GC. This also hurts the
TLB footprint of the garbage collector because it decreases the
density of scannable objects at the page level.

This commit improves the situation by using separate spans for noscan
objects. This will allow a much simpler noscan check (in a follow up
CL), eliminate the need to clear the bitmap of noscan objects (in a
follow up CL), and improves TLB footprint by increasing the density of
scannable objects.

This is also a step toward eliminating dead bits, since the current
noscan check depends on checking the dead bit of the first word.

This has no effect on the heap size of the garbage benchmark.

We'll measure the performance change of this after the follow-up
optimizations.

Change-Id: I13bdc4869538ece5649a8d2a41c6605371618e40
Reviewed-on: https://go-review.googlesource.com/23700Reviewed-by: 's avatarRick Hudson <rlh@golang.org>
parent 641c32da
......@@ -491,8 +491,8 @@ func nextFreeFast(s *mspan) gclinkptr {
// weight allocation. If it is a heavy weight allocation the caller must
// determine whether a new GC cycle needs to be started or if the GC is active
// whether this goroutine needs to assist the GC.
func (c *mcache) nextFree(sizeclass int8) (v gclinkptr, s *mspan, shouldhelpgc bool) {
s = c.alloc[sizeclass]
func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
s = c.alloc[spc]
shouldhelpgc = false
freeIndex := s.nextFreeIndex()
if freeIndex == s.nelems {
......@@ -502,10 +502,10 @@ func (c *mcache) nextFree(sizeclass int8) (v gclinkptr, s *mspan, shouldhelpgc b
throw("s.allocCount != s.nelems && freeIndex == s.nelems")
}
systemstack(func() {
c.refill(int32(sizeclass))
c.refill(spc)
})
shouldhelpgc = true
s = c.alloc[sizeclass]
s = c.alloc[spc]
freeIndex = s.nextFreeIndex()
}
......@@ -629,10 +629,10 @@ func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
return x
}
// Allocate a new maxTinySize block.
span := c.alloc[tinySizeClass]
span := c.alloc[tinySpanClass]
v := nextFreeFast(span)
if v == 0 {
v, _, shouldhelpgc = c.nextFree(tinySizeClass)
v, _, shouldhelpgc = c.nextFree(tinySpanClass)
}
x = unsafe.Pointer(v)
(*[2]uint64)(x)[0] = 0
......@@ -652,10 +652,11 @@ func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
sizeclass = size_to_class128[(size-1024+127)>>7]
}
size = uintptr(class_to_size[sizeclass])
span := c.alloc[sizeclass]
spc := makeSpanClass(sizeclass, noscan)
span := c.alloc[spc]
v := nextFreeFast(span)
if v == 0 {
v, span, shouldhelpgc = c.nextFree(sizeclass)
v, span, shouldhelpgc = c.nextFree(spc)
}
x = unsafe.Pointer(v)
if needzero && span.needzero != 0 {
......@@ -666,7 +667,7 @@ func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
var s *mspan
shouldhelpgc = true
systemstack(func() {
s = largeAlloc(size, needzero)
s = largeAlloc(size, needzero, noscan)
})
s.freeindex = 1
s.allocCount = 1
......@@ -755,7 +756,7 @@ func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
return x
}
func largeAlloc(size uintptr, needzero bool) *mspan {
func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
// print("largeAlloc size=", size, "\n")
if size+_PageSize < size {
......@@ -771,7 +772,7 @@ func largeAlloc(size uintptr, needzero bool) *mspan {
// pays the debt down to npage pages.
deductSweepCredit(npages*_PageSize, npages)
s := mheap_.alloc(npages, 0, true, needzero)
s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero)
if s == nil {
throw("out of memory")
}
......
......@@ -509,6 +509,7 @@ func (h heapBits) isPointer() bool {
// It must be told how large the object at h is for efficiency.
// h must describe the initial word of the object.
func (h heapBits) hasPointers(size uintptr) bool {
// TODO: Use span.noScan instead of the heap bitmap.
if size == sys.PtrSize { // 1-word objects are always pointers
return true
}
......
......@@ -31,7 +31,8 @@ type mcache struct {
local_tinyallocs uintptr // number of tiny allocs not counted in other stats
// The rest is not accessed on every malloc.
alloc [_NumSizeClasses]*mspan // spans to allocate from
alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass
stackcache [_NumStackOrders]stackfreelist
......@@ -76,7 +77,7 @@ func allocmcache() *mcache {
c := (*mcache)(mheap_.cachealloc.alloc())
unlock(&mheap_.lock)
memclr(unsafe.Pointer(c), unsafe.Sizeof(*c))
for i := 0; i < _NumSizeClasses; i++ {
for i := range c.alloc {
c.alloc[i] = &emptymspan
}
c.next_sample = nextSample()
......@@ -102,12 +103,12 @@ func freemcache(c *mcache) {
// Gets a span that has a free object in it and assigns it
// to be the cached span for the given sizeclass. Returns this span.
func (c *mcache) refill(sizeclass int32) *mspan {
func (c *mcache) refill(spc spanClass) *mspan {
_g_ := getg()
_g_.m.locks++
// Return the current cached span to the central lists.
s := c.alloc[sizeclass]
s := c.alloc[spc]
if uintptr(s.allocCount) != s.nelems {
throw("refill of span with free space remaining")
......@@ -118,7 +119,7 @@ func (c *mcache) refill(sizeclass int32) *mspan {
}
// Get a new cached span from the central lists.
s = mheap_.central[sizeclass].mcentral.cacheSpan()
s = mheap_.central[spc].mcentral.cacheSpan()
if s == nil {
throw("out of memory")
}
......@@ -127,13 +128,13 @@ func (c *mcache) refill(sizeclass int32) *mspan {
throw("span has no free space")
}
c.alloc[sizeclass] = s
c.alloc[spc] = s
_g_.m.locks--
return s
}
func (c *mcache) releaseAll() {
for i := 0; i < _NumSizeClasses; i++ {
for i := range c.alloc {
s := c.alloc[i]
if s != &emptymspan {
mheap_.central[i].mcentral.uncacheSpan(s)
......
......@@ -17,14 +17,14 @@ import "runtime/internal/atomic"
// Central list of free objects of a given size.
type mcentral struct {
lock mutex
sizeclass int32
spanclass spanClass
nonempty mSpanList // list of spans with a free object, ie a nonempty free list
empty mSpanList // list of spans with no free objects (or cached in an mcache)
}
// Initialize a single central free list.
func (c *mcentral) init(sizeclass int32) {
c.sizeclass = sizeclass
func (c *mcentral) init(spc spanClass) {
c.spanclass = spc
c.nonempty.init()
c.empty.init()
}
......@@ -32,7 +32,7 @@ func (c *mcentral) init(sizeclass int32) {
// Allocate a span to use in an MCache.
func (c *mcentral) cacheSpan() *mspan {
// Deduct credit for this span allocation and sweep if necessary.
spanBytes := uintptr(class_to_allocnpages[c.sizeclass]) * _PageSize
spanBytes := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) * _PageSize
deductSweepCredit(spanBytes, 0)
lock(&c.lock)
......@@ -203,11 +203,11 @@ func (c *mcentral) freeSpan(s *mspan, preserve bool, wasempty bool) bool {
// grow allocates a new empty span from the heap and initializes it for c's size class.
func (c *mcentral) grow() *mspan {
npages := uintptr(class_to_allocnpages[c.sizeclass])
size := uintptr(class_to_size[c.sizeclass])
npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()])
size := uintptr(class_to_size[c.spanclass.sizeclass()])
n := (npages << _PageShift) / size
s := mheap_.alloc(npages, c.sizeclass, false, true)
s := mheap_.alloc(npages, c.spanclass, false, true)
if s == nil {
return nil
}
......
......@@ -429,7 +429,7 @@ func findObject(v unsafe.Pointer) (s *mspan, x unsafe.Pointer, n uintptr) {
}
n = s.elemsize
if s.sizeclass != 0 {
if s.spanclass.sizeclass() != 0 {
x = add(x, (uintptr(v)-uintptr(x))/n*n)
}
return
......
......@@ -1260,7 +1260,7 @@ func gcDumpObject(label string, obj, off uintptr) {
print(" s=nil\n")
return
}
print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, "\n")
print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.spanclass=", s.spanclass, " s.elemsize=", s.elemsize, "\n")
skipped := false
for i := uintptr(0); i < s.elemsize; i += sys.PtrSize {
// For big objects, just print the beginning (because
......
......@@ -182,7 +182,7 @@ func (s *mspan) sweep(preserve bool) bool {
atomic.Xadd64(&mheap_.pagesSwept, int64(s.npages))
cl := s.sizeclass
spc := s.spanclass
size := s.elemsize
res := false
nfree := 0
......@@ -276,7 +276,7 @@ func (s *mspan) sweep(preserve bool) bool {
// Count the number of free objects in this span.
nfree = s.countFree()
if cl == 0 && nfree != 0 {
if spc.sizeclass() == 0 && nfree != 0 {
s.needzero = 1
freeToHeap = true
}
......@@ -317,9 +317,9 @@ func (s *mspan) sweep(preserve bool) bool {
atomic.Store(&s.sweepgen, sweepgen)
}
if nfreed > 0 && cl != 0 {
c.local_nsmallfree[cl] += uintptr(nfreed)
res = mheap_.central[cl].mcentral.freeSpan(s, preserve, wasempty)
if nfreed > 0 && spc.sizeclass() != 0 {
c.local_nsmallfree[spc.sizeclass()] += uintptr(nfreed)
res = mheap_.central[spc].mcentral.freeSpan(s, preserve, wasempty)
// MCentral_FreeSpan updates sweepgen
} else if freeToHeap {
// Free large span to heap
......
......@@ -57,7 +57,8 @@ type mheap struct {
// the padding makes sure that the MCentrals are
// spaced CacheLineSize bytes apart, so that each MCentral.lock
// gets its own cache line.
central [_NumSizeClasses]struct {
// central is indexed by spanClass.
central [numSpanClasses]struct {
mcentral mcentral
pad [sys.CacheLineSize]byte
}
......@@ -181,21 +182,21 @@ type mspan struct {
// h->sweepgen is incremented by 2 after every GC
sweepgen uint32
divMul uint32 // for divide by elemsize - divMagic.mul
allocCount uint16 // capacity - number of objects in freelist
sizeclass uint8 // size class
incache bool // being used by an mcache
state uint8 // mspaninuse etc
needzero uint8 // needs to be zeroed before allocation
divShift uint8 // for divide by elemsize - divMagic.shift
divShift2 uint8 // for divide by elemsize - divMagic.shift2
elemsize uintptr // computed from sizeclass or from npages
unusedsince int64 // first time spotted by gc in mspanfree state
npreleased uintptr // number of pages released to the os
limit uintptr // end of data in span
speciallock mutex // guards specials list
specials *special // linked list of special records sorted by offset.
baseMask uintptr // if non-0, elemsize is a power of 2, & this will get object allocation base
divMul uint32 // for divide by elemsize - divMagic.mul
allocCount uint16 // capacity - number of objects in freelist
spanclass spanClass // size class and noscan (uint8)
incache bool // being used by an mcache
state uint8 // mspaninuse etc
needzero uint8 // needs to be zeroed before allocation
divShift uint8 // for divide by elemsize - divMagic.shift
divShift2 uint8 // for divide by elemsize - divMagic.shift2
elemsize uintptr // computed from sizeclass or from npages
unusedsince int64 // first time spotted by gc in mspanfree state
npreleased uintptr // number of pages released to the os
limit uintptr // end of data in span
speciallock mutex // guards specials list
specials *special // linked list of special records sorted by offset.
baseMask uintptr // if non-0, elemsize is a power of 2, & this will get object allocation base
}
func (s *mspan) base() uintptr {
......@@ -251,6 +252,31 @@ func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
h.nspan = uint32(len(h_allspans))
}
// A spanClass represents the size class and noscan-ness of a span.
//
// Each size class has a noscan spanClass and a scan spanClass. The
// noscan spanClass contains only noscan objects, which do not contain
// pointers and thus do not need to be scanned by the garbage
// collector.
type spanClass uint8
const (
numSpanClasses = _NumSizeClasses << 1
tinySpanClass = tinySizeClass<<1 | 1
)
func makeSpanClass(sizeclass int8, noscan bool) spanClass {
return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
}
func (sc spanClass) sizeclass() int8 {
return int8(sc >> 1)
}
func (sc spanClass) noscan() bool {
return sc&1 != 0
}
// inheap reports whether b is a pointer into a (potentially dead) heap object.
// It returns false for pointers into stack spans.
// Non-preemptible because it is used by write barriers.
......@@ -335,7 +361,7 @@ func mlookup(v uintptr, base *uintptr, size *uintptr, sp **mspan) int32 {
}
p := s.base()
if s.sizeclass == 0 {
if s.spanclass.sizeclass() == 0 {
// Large object.
if base != nil {
*base = p
......@@ -374,7 +400,7 @@ func (h *mheap) init(spans_size uintptr) {
h.freelarge.init()
h.busylarge.init()
for i := range h.central {
h.central[i].mcentral.init(int32(i))
h.central[i].mcentral.init(spanClass(i))
}
sp := (*slice)(unsafe.Pointer(&h_spans))
......@@ -481,7 +507,7 @@ func (h *mheap) reclaim(npage uintptr) {
// Allocate a new span of npage pages from the heap for GC'd memory
// and record its size class in the HeapMap and HeapMapCache.
func (h *mheap) alloc_m(npage uintptr, sizeclass int32, large bool) *mspan {
func (h *mheap) alloc_m(npage uintptr, spanclass spanClass, large bool) *mspan {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("_mheap_alloc not on g0 stack")
......@@ -514,8 +540,8 @@ func (h *mheap) alloc_m(npage uintptr, sizeclass int32, large bool) *mspan {
atomic.Store(&s.sweepgen, h.sweepgen)
s.state = _MSpanInUse
s.allocCount = 0
s.sizeclass = uint8(sizeclass)
if sizeclass == 0 {
s.spanclass = spanclass
if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
s.elemsize = s.npages << _PageShift
s.divShift = 0
s.divMul = 0
......@@ -565,13 +591,13 @@ func (h *mheap) alloc_m(npage uintptr, sizeclass int32, large bool) *mspan {
return s
}
func (h *mheap) alloc(npage uintptr, sizeclass int32, large bool, needzero bool) *mspan {
func (h *mheap) alloc(npage uintptr, spanclass spanClass, large bool, needzero bool) *mspan {
// Don't do any operations that lock the heap on the G stack.
// It might trigger stack growth, and the stack growth code needs
// to be able to allocate heap.
var s *mspan
systemstack(func() {
s = h.alloc_m(npage, sizeclass, large)
s = h.alloc_m(npage, spanclass, large)
})
if s != nil {
......@@ -964,7 +990,7 @@ func (span *mspan) init(base uintptr, npages uintptr) {
span.startAddr = base
span.npages = npages
span.allocCount = 0
span.sizeclass = 0
span.spanclass = 0
span.incache = false
span.elemsize = 0
span.state = _MSpanDead
......
......@@ -291,12 +291,12 @@ func updatememstats(stats *gcstats) {
if s.state != mSpanInUse {
continue
}
if s.sizeclass == 0 {
if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
memstats.nmalloc++
memstats.alloc += uint64(s.elemsize)
} else {
memstats.nmalloc += uint64(s.allocCount)
memstats.by_size[s.sizeclass].nmalloc += uint64(s.allocCount)
memstats.by_size[sizeclass].nmalloc += uint64(s.allocCount)
memstats.alloc += uint64(s.allocCount) * uint64(s.elemsize)
}
}
......
......@@ -273,3 +273,10 @@ func round(n, a uintptr) uintptr {
// checkASM returns whether assembly runtime checks have passed.
func checkASM() bool
// bool2int returns 0 if x is false or 1 if x is true.
func bool2int(x bool) int {
// Avoid branches. In the SSA compiler, this compiles to
// exactly what you would want it to.
return int(uint8(*(*uint8)(unsafe.Pointer(&x))))
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment