Commit e2d1595c authored by Roger Peppe's avatar Roger Peppe Committed by Rob Pike

time: make After use fewer goroutines and host processes.

With credit to Gustavo Niemeyer, who hinted at this approach
in #go-nuts.

R=adg, rsc, niemeyer, r
CC=golang-dev
https://golang.org/cl/3416043
parent 415545e5
......@@ -7,8 +7,26 @@ package time
import (
"os"
"syscall"
"sync"
"container/heap"
)
// The event type represents a single After event.
type event struct {
t int64 // The absolute time that the event should fire.
c chan<- int64 // The channel to send on.
sleeping bool // A sleeper is sleeping for this event.
}
type eventHeap []*event
var events eventHeap
var eventMutex sync.Mutex
func init() {
events.Push(&event{1 << 62, nil, true}) // sentinel
}
// Sleep pauses the current goroutine for at least ns nanoseconds.
// Higher resolution sleeping may be provided by syscall.Nanosleep
// on some operating systems.
......@@ -17,18 +35,6 @@ func Sleep(ns int64) os.Error {
return err
}
// After waits at least ns nanoseconds before sending the current time
// on the returned channel.
func After(ns int64) <-chan int64 {
t := Nanoseconds()
ch := make(chan int64, 1)
go func() {
t, _ = sleep(t, ns)
ch <- t
}()
return ch
}
// sleep takes the current time and a duration,
// pauses for at least ns nanoseconds, and
// returns the current time and an error.
......@@ -44,3 +50,87 @@ func sleep(t, ns int64) (int64, os.Error) {
}
return t, nil
}
// After waits at least ns nanoseconds before sending the current time
// on the returned channel.
func After(ns int64) <-chan int64 {
c := make(chan int64, 1)
t := ns + Nanoseconds()
eventMutex.Lock()
t0 := events[0].t
heap.Push(events, &event{t, c, false})
if t < t0 {
go sleeper()
}
eventMutex.Unlock()
return c
}
// sleeper continually looks at the earliest event in the queue, marks it
// as sleeping, waits until it happens, then removes any events
// in the queue that are due. It stops when it finds an event that is
// already marked as sleeping. When an event is inserted before the first item,
// a new sleeper is started.
//
// Scheduling vagaries mean that sleepers may not wake up in
// exactly the order of the events that they are waiting for,
// but this does not matter as long as there are at least as
// many sleepers as events marked sleeping (invariant). This ensures that
// there is always a sleeper to service the remaining events.
//
// A sleeper will remove at least the event it has been waiting for
// unless the event has already been removed by another sleeper. Both
// cases preserve the invariant described above.
func sleeper() {
eventMutex.Lock()
e := events[0]
for !e.sleeping {
t := Nanoseconds()
if dt := e.t - t; dt > 0 {
e.sleeping = true
eventMutex.Unlock()
if nt, err := sleep(t, dt); err != nil {
// If sleep has encountered an error,
// there's not much we can do. We pretend
// that time really has advanced by the required
// amount and lie to the rest of the system.
t = e.t
} else {
t = nt
}
eventMutex.Lock()
e = events[0]
}
for t >= e.t {
e.c <- t
heap.Pop(events)
e = events[0]
}
}
eventMutex.Unlock()
}
func (eventHeap) Len() int {
return len(events)
}
func (eventHeap) Less(i, j int) bool {
return events[i].t < events[j].t
}
func (eventHeap) Swap(i, j int) {
events[i], events[j] = events[j], events[i]
}
func (eventHeap) Push(x interface{}) {
events = append(events, x.(*event))
}
func (eventHeap) Pop() interface{} {
// TODO: possibly shrink array.
n := len(events) - 1
e := events[n]
events[n] = nil
events = events[0:n]
return e
}
......@@ -8,6 +8,7 @@ import (
"os"
"syscall"
"testing"
"sort"
. "time"
)
......@@ -36,3 +37,60 @@ func TestAfter(t *testing.T) {
t.Fatalf("After(%d) expect >= %d, got %d", delay, min, end)
}
}
func TestAfterTick(t *testing.T) {
const (
Delta = 100 * 1e6
Count = 10
)
t0 := Nanoseconds()
for i := 0; i < Count; i++ {
<-After(Delta)
}
t1 := Nanoseconds()
ns := t1 - t0
target := int64(Delta * Count)
slop := target * 2 / 10
if ns < target-slop || ns > target+slop {
t.Fatalf("%d ticks of %g ns took %g ns, expected %g", Count, float64(Delta), float64(ns), float64(target))
}
}
var slots = []int{5, 3, 6, 6, 6, 1, 1, 2, 7, 9, 4, 8, 0}
type afterResult struct {
slot int
t int64
}
func await(slot int, result chan<- afterResult, ac <-chan int64) {
result <- afterResult{slot, <-ac}
}
func TestAfterQueuing(t *testing.T) {
const (
Delta = 100 * 1e6
)
// make the result channel buffered because we don't want
// to depend on channel queueing semantics that might
// possibly change in the future.
result := make(chan afterResult, len(slots))
t0 := Nanoseconds()
for _, slot := range slots {
go await(slot, result, After(int64(slot)*Delta))
}
sort.SortInts(slots)
for _, slot := range slots {
r := <-result
if r.slot != slot {
t.Fatalf("after queue got slot %d, expected %d", r.slot, slot)
}
ns := r.t - t0
target := int64(slot * Delta)
slop := int64(Delta) / 10
if ns < target-slop || ns > target+slop {
t.Fatalf("after queue slot %d arrived at %g, expected %g", slot, float64(ns), float64(target))
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment