Commit ed628ca7 authored by Russ Cox's avatar Russ Cox

* faster atof for common cases

  (gets 3x speedup in go; got 40x in c)
* handle and test overflow

R=r
DELTA=217  (200 added, 0 deleted, 17 changed)
OCL=19399
CL=19422
parent 4d1d5e8a
......@@ -12,7 +12,7 @@ package strconv
import "strconv"
// TODO(rsc): Better truncation handling, check for overflow in exponent.
// TODO(rsc): Better truncation handling.
func StringToDecimal(s string) (neg bool, d *Decimal, trunc bool, ok bool) {
i := 0;
......@@ -61,7 +61,11 @@ func StringToDecimal(s string) (neg bool, d *Decimal, trunc bool, ok bool) {
b.dp = b.nd;
}
// optional exponent moves decimal point
// optional exponent moves decimal point.
// if we read a very large, very long number,
// just be sure to move the decimal point by
// a lot (say, 100000). it doesn't matter if it's
// not the exact number.
if i < len(s) && s[i] == 'e' {
i++;
if i >= len(s) {
......@@ -79,7 +83,9 @@ func StringToDecimal(s string) (neg bool, d *Decimal, trunc bool, ok bool) {
}
e := 0;
for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
e = e*10 + int(s[i]) - '0';
if e < 10000 {
e = e*10 + int(s[i]) - '0';
}
}
b.dp += e*esign;
}
......@@ -104,10 +110,24 @@ func DecimalToFloatBits(neg bool, d *Decimal, trunc bool, flt *FloatInfo) (b uin
return 0, false
}
// TODO: check for obvious overflow
var exp int;
var mant uint64;
// Obvious overflow/underflow.
// These bounds are for 64-bit floats.
// Will have to change if we want to support 80-bit floats in the future.
if d.dp > 310 {
goto overflow;
}
if d.dp < -330 {
// zero
mant = 0;
exp = flt.bias;
goto out;
}
// Scale by powers of two until in range [0.5, 1.0)
exp := 0;
exp = 0;
for d.dp > 0 {
var n int;
if d.dp >= len(powtab) {
......@@ -141,10 +161,21 @@ func DecimalToFloatBits(neg bool, d *Decimal, trunc bool, flt *FloatInfo) (b uin
exp += n;
}
// TODO: overflow/underflow
if exp-flt.bias >= 1<<flt.expbits - 1 {
goto overflow;
}
// Extract 1+flt.mantbits bits.
mant := d.Shift(int(1+flt.mantbits)).RoundedInteger();
mant = d.Shift(int(1+flt.mantbits)).RoundedInteger();
// Rounding might have added a bit; shift down.
if mant == 2<<flt.mantbits {
mant >>= 1;
exp++;
if exp-flt.bias >= 1<<flt.expbits - 1 {
goto overflow;
}
}
// Denormalized?
if mant&(1<<flt.mantbits) == 0 {
......@@ -159,30 +190,135 @@ func DecimalToFloatBits(neg bool, d *Decimal, trunc bool, flt *FloatInfo) (b uin
panicln("DecimalToFloatBits1", exp, flt.bias);
}
}
goto out;
overflow:
// ±Inf
mant = 0;
exp = 1<<flt.expbits - 1 + flt.bias;
overflow = true;
out:
// Assemble bits.
bits := mant & (uint64(1)<<flt.mantbits - 1);
bits |= uint64((exp-flt.bias)&(1<<flt.expbits - 1)) << flt.mantbits;
if neg {
bits |= 1<<flt.mantbits<<flt.expbits;
}
return bits, false;
return bits, overflow;
}
// Compute exact floating-point integer from d's digits.
// Caller is responsible for avoiding overflow.
func DecimalToFloat64Int(neg bool, d *Decimal) float64 {
f := float64(0);
for i := 0; i < d.nd; i++ {
f = f*10 + float64(d.d[i] - '0');
}
if neg {
f = -f;
}
return f;
}
func DecimalToFloat32Int(neg bool, d *Decimal) float32 {
f := float32(0);
for i := 0; i < d.nd; i++ {
f = f*10 + float32(d.d[i] - '0');
}
if neg {
f = -f;
}
return f;
}
// Exact powers of 10.
var float64pow10 = []float64 {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
}
var float32pow10 = []float32 {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10
}
// If possible to convert decimal d to 64-bit float f exactly,
// entirely in floating-point math, do so, avoiding the machinery above.
// entirely in floating-point math, do so, avoiding the expense of DecimalToFloatBits.
// Three common cases:
// value is exact integer
// value is exact integer * exact power of ten
// value is exact integer / exact power of ten
// These all produce potentially inexact but correctly rounded answers.
func DecimalToFloat64(neg bool, d *Decimal, trunc bool) (f float64, ok bool) {
// TODO: Fill in.
return 0, false;
// Exact integers are <= 10^15.
// Exact powers of ten are <= 10^22.
if d.nd > 15 {
return;
}
switch {
case d.dp == d.nd: // int
f := DecimalToFloat64Int(neg, d);
return f, true;
case d.dp > d.nd && d.dp <= 15+22: // int * 10^k
f := DecimalToFloat64Int(neg, d);
k := d.dp - d.nd;
// If exponent is big but number of digits is not,
// can move a few zeros into the integer part.
if k > 22 {
f *= float64pow10[k-22];
k = 22;
}
return f*float64pow10[k], true;
case d.dp < d.nd && d.nd - d.dp <= 22: // int / 10^k
f := DecimalToFloat64Int(neg, d);
return f/float64pow10[d.nd - d.dp], true;
}
return;
}
// If possible to convert decimal d to 32-bit float f exactly,
// entirely in floating-point math, do so, avoiding the machinery above.
func DecimalToFloat32(neg bool, d *Decimal, trunc bool) (f float32, ok bool) {
// TODO: Fill in.
return 0, false;
// Exact integers are <= 10^7.
// Exact powers of ten are <= 10^10.
if d.nd > 7 {
return;
}
switch {
case d.dp == d.nd: // int
f := DecimalToFloat32Int(neg, d);
return f, true;
case d.dp > d.nd && d.dp <= 7+10: // int * 10^k
f := DecimalToFloat32Int(neg, d);
k := d.dp - d.nd;
// If exponent is big but number of digits is not,
// can move a few zeros into the integer part.
if k > 10 {
f *= float32pow10[k-10];
k = 10;
}
return f*float32pow10[k], true;
case d.dp < d.nd && d.nd - d.dp <= 10: // int / 10^k
f := DecimalToFloat32Int(neg, d);
return f/float32pow10[d.nd - d.dp], true;
}
return;
}
// Convert string s to floating-point number.
//
// If s is well-formed and near a valid floating point number,
// returns f, false, true, where f is the nearest floating point
// number rounded using IEEE754 unbiased rounding.
//
// If s is not syntactically well-formed, returns ok == false.
//
// If s is syntactically well-formed but is more than 1/2 ULP
// away from the largest floating point number of the given size,
// returns f = ±Inf, overflow = true, ok = true.
export func atof64(s string) (f float64, overflow bool, ok bool) {
neg, d, trunc, ok1 := StringToDecimal(s);
if !ok1 {
......
......@@ -24,6 +24,61 @@ var tests = []Test {
Test{ "100000000000000016777216", "1.0000000000000003e+23" },
Test{ "-1", "-1" },
Test{ "-0", "0" },
Test{ "1e-20", "1e-20" },
// largest float64
Test{ "1.7976931348623157e308", "1.7976931348623157e+308" },
Test{ "-1.7976931348623157e308", "-1.7976931348623157e+308" },
// next float64 - too large
Test{ "1.7976931348623159e308", "+Inf" },
Test{ "-1.7976931348623159e308", "-Inf" },
// the border is ...158079
// borderline - okay
Test{ "1.7976931348623158e308", "1.7976931348623157e+308" },
Test{ "-1.7976931348623158e308", "-1.7976931348623157e+308" },
// borderline - too large
Test{ "1.797693134862315808e308", "+Inf" },
Test{ "-1.797693134862315808e308", "-Inf" },
// a little too large
Test{ "1e308", "1e+308" },
Test{ "2e308", "+Inf" },
Test{ "1e309", "+Inf" },
// way too large
Test{ "1e310", "+Inf" },
Test{ "-1e310", "-Inf" },
Test{ "1e400", "+Inf" },
Test{ "-1e400", "-Inf" },
Test{ "1e400000", "+Inf" },
Test{ "-1e400000", "-Inf" },
// denormalized
Test{ "1e-305", "1e-305" },
Test{ "1e-306", "1e-306" },
Test{ "1e-307", "1e-307" },
Test{ "1e-308", "1e-308" },
Test{ "1e-309", "1e-309" },
Test{ "1e-310", "1e-310" },
Test{ "1e-322", "1e-322" },
// smallest denormal
Test{ "5e-324", "5e-324" },
// too small
Test{ "4e-324", "0" },
// way too small
Test{ "1e-350", "0" },
Test{ "1e-400000", "0" },
// try to overflow exponent
Test{ "1e-4294967296", "0" },
Test{ "1e+4294967296", "+Inf" },
Test{ "1e-18446744073709551616", "0" },
Test{ "1e+18446744073709551616", "+Inf" },
// Parse errors
Test{ "1e", "error" },
Test{ "1e-", "error" },
Test{ ".e-1", "error" },
}
func main() {
......@@ -31,8 +86,17 @@ func main() {
for i := 0; i < len(tests); i++ {
t := &tests[i];
f, overflow, ok := strconv.atof64(t.in);
if !ok && t.out == "error" {
continue;
}
if !ok {
panicln("test", t.in);
panicln("test:", t.in, "failed to parse");
}
if overflow && !sys.isInf(f, 0) {
panicln("overflow but not inf:", t.in, f);
}
if sys.isInf(f, 0) && !overflow {
panicln("inf but not overflow:", t.in, f);
}
s := strconv.ftoa64(f, 'g', -1);
if s != t.out {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment