-
David Leon Gil authored
For primes which are 3 mod 4, using Tonelli-Shanks is slower and more complicated than using the identity a**((p+1)/4) mod p == sqrt(a) For 2^450-2^225-1 and 2^10860-2^5430-1, which are 3 mod 4: BenchmarkModSqrt225_TonelliTri 1000 1135375 ns/op BenchmarkModSqrt225_3Mod4 10000 156009 ns/op BenchmarkModSqrt5430_Tonelli 1 3448851386 ns/op BenchmarkModSqrt5430_3Mod4 2 914616710 ns/op ~2.6x to 7x faster. Fixes #11437 (which is a prime choice of issues to fix) Change-Id: I813fb29454160483ec29825469e0370d517850c2 Reviewed-on: https://go-review.googlesource.com/11522Reviewed-by: Adam Langley <agl@golang.org>
ea0491b7
Name |
Last commit
|
Last update |
---|---|---|
api | ||
doc | ||
lib/time | ||
misc | ||
src | ||
test | ||
.gitattributes | ||
.gitignore | ||
AUTHORS | ||
CONTRIBUTING.md | ||
CONTRIBUTORS | ||
LICENSE | ||
PATENTS | ||
README.md | ||
favicon.ico | ||
robots.txt |